

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

LEARN MORE ABOUT ICFS AT ICF-MA.ORG

This engineering is only authorized for use by ICFMA Members. ©2021 All Rights Reserved.

This page left intentionally blank.

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction

Preface

Welcome to the First Edition of the ICFMA Prescriptive ICF Design Tables for Part 9 Buildings in Canada. The following guideline specifications were developed on behalf of the member companies of the Insulating Concrete Form Manufacturers Association (ICFMA) by Tacoma Engineers Inc. with offices in Ontario, Canada.

Objective

The objective of this manual is to provide Prescriptive Tables, Engineering Details and ICF product information that is code compliant for buildings constructed under Part 9 of the 2015 National Building Code of Canada. This manual provides code compliant information for Insulating Concrete Forms across each provincial region of Canada and contains a broad scope of residential designs that cover specific nuances of individual provincial regions. Each of the tables and designs cover the standard specifications for products manufactured or produced by members of the ICFMA. This guide is available in both English and French language versions.

Scope

Design information contained in this guide applies to below-grade and above-grade ICF reinforced concrete walls, both load bearing and nonload bearing, that make up the exterior and/or interior of Part 9 buildings that fall within the limitations of this guide. Floor design/connections and roof design/connections are not covered in this guide and must be designed by others. Any other building component not specifically named in this guide must be designed by others or follow prescriptive provisions contained in the applicable building code. Fire resistance characteristics of ICF/concrete walls are not covered in this guide, but are available from your ICFMA member company upon request.

Applicability

The tables in this manual are the property of the ICFMA and are specific to products offered by ICFMA member companies. The tables are not authorized for use by non-member ICF manufacturers or non-ICF methods of concrete forming. If specific questions arise about how to design or reference the tables in this manual of an ICFMA members product check with the technical department of that ICFMA member company. For example: Coursing height may vary between 12 inches and 18 inches depending on brand used. Horizontal tie spacing may vary between 6 inches and 12 inches. Product specific nuances may affect how the tables in the guide are used.

Design information contained in this document is limited to use in buildings described in Section 1 *"Design Parameters"* of the guide, including a maximum number of below-grade and above-grade stories as well as certain building size limitations. While the intent of this guide are the broadest applicability of Canada and it's individual provinces, there are some limits to applicability, including seismic response and wind loading. Building design may be limited by spans, deflection and aspect ratio among others.

CHECK ALL CONDITIONS THAT APPLY TO YOUR SITE AND BUILDING DESIGN TO ENSURE COMPATIBILITY WITH THE LIMITATIONS STATED IN SECTION 1 OF THIS GUIDE BEFORE PROCEEDING WITH ITS USE.

Engineered Design

These tables and specifications have been developed and reviewed against the 2015 National Building Code of Canada and CAN/ULC A23.3 by Tacoma Engineers. www.tacomaengineers.com Tables carry a stamp for all Canadian provinces. Check for a stamp applicable to your province before using or referring to the tables.

Review for code compliance will be carried out as building code and standards versions evolve. Check with your ICF member company for the most current guide version available.

Errata

All efforts have been made to create a publication free from errors. If ICFMA is notified of or discovers errors, errata will be published and posted on the ICFMA website at <u>www.icf-ma.org</u>.

Copyright

©2021 Insulating Concrete Form Manufacturers Association

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

The Insulating Concrete Form Manufacturers Association (ICFMA) is a not-for-profit trade organization and provides this publication solely for the continuing education of qualified building design and construction professionals. This publication should only be used by qualified professionals who possess all required license(s) in the authority having jurisdiction and who are competent to evaluate the significance and limitations of the information provided herein. Any qualified professional who choses to use any of the information found in this publication must accept total responsibility for the application of this information. Other readers should obtain assistance from a Qualified Professional before proceeding.

ICFMA and its members make no express or implied warranty with respect to this publication or any information contained herein. No warranty is made of merchantability or fitness for a particular purpose. ICFMA and its members disclaim any product liability (including without limitation any strict liability in tort) in connection with this publication or any information contained herein.

Acknowledgments

The Insulating Concrete Form Manufacturers Association wishes to express its thanks to the following individuals for their contributions and guidance throughout the process of creating this guide:

Ross Monsour – ICFMA Director

Robert Schulthorpe - Engineering Consultant

Nathan Proper - Tacoma Engineers

Morteza Mehrzadi – Tacoma Engineers

Jason Unruh – SuperForm ICF

Dennis Micoff – BuildBlock ICF

Francis Roma – Logix ICF Keven Rector – Nudura ICF Douglas Bennion – Quad-Lock ICF Kelvin Doerr – Fox Blocks ICF

Brian Corder – BuildBlock ICF

This page left intentionally blank.

Structural Design - National and Provincial Codes and Stamps

Tacoma Engineers has completed the structural design of the Insulating Concrete Forms Manufacturers Association (ICFMA) Prescriptive ICF Design Tables for Part 9 Buildings in Canada, in accordance with the 2015 National Building Code of Canada (NBCC).

This design guide is certified for all Canadian provinces, including:

Ontario, British Columbia, Alberta, Saskatchewan, Manitoba, Nova Scotia, Prince Edward Island, Quebec, Newfoundland and Labrador and New Brunswick.

In addition to the 2015 NBCC, this design guide has also been reviewed and is certified for conformance to the following building codes and regulations:

- Ontario: Ontario Building Code as in Effect January 2020 (OBC 2012 r2020)
- Nova Scotia: Nova Scotia Building Code as in Effect January 2020
- Alberta: 2019 Alberta Building Code
- British Columbia: 2018 British Columbia Building Code
- Manitoba: 2011 Manitoba Building Code as Amended in 2017

Saskatchewan: 2015 NBCC as Amended by The Uniform Building and Accessibility Standard Regulation in Saskatchewan on January 2018. New Brunswick: 2015 NBCC Adopted by the Province of New Brunswick.

Prince Edward Island: 2015 NBCC Adopted by the Province of Prince Edward Island on March, 2021.

Newfoundland and Labrador: 2015 NBCC Adopted by Newfoundland and Labrador Regulation on January, 2019.

Quebec: 2015 NBCC that will be adopted by the province of Quebec

Note: This design guide may not be legally applicable in Quebec until NBCC 2015 is implemented.

This page includes the stamps and seals for these provinces. Due to space limitations, other pages are only stamped with an Ontario stamp.

EXPERIENCE TRUST

STRUCTURAL ENGINEERS

GUELPH - BARRIE - WATERLOO

www.tacomaengineers.com

519-763-2000 (Guelph)

This page left intentionally blank.

Table of Contents

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction
Objective
Scope
Applicability
Engineered Design
Errata3
Copyright3
Acknowledgments
Structural Design - National and Provincial Codes and Stamps5
Design Limitation9
1. Design Parameters9
2. Construction
3. Concrete
4. Reinforcing Steel10
5. Above Grade and Below Grade Walls10
5.1 Distributed Reinforcing Steel 11
5.2 Shear Walls 11
5.3 Concentrated Point Loads on Walls
5.4 Window and Door Openings
5.4.1 Lintels
5.6 Laterally Supported Unreinforced Foundation Wall
5.7 Laterally Unsupported Foundation Walls (Knee Wall) with Wood
Framing Above
Framing Above
7 Brick Ledge 13
8. Strip Footing
Details & Tables Index
Below & Above Grade Walls Details and Tables
Thicknesses
10" Thick Walls
Walls19
Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)
Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C
Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C
Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C.
to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)
Wall Configurations in a Building Without Walkout Basement22 Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof

 Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof......23

Wall Configurations in a Building with Walkout Basement 24 Detail A.8.1. Main Floor Walls of One-Story Structure Supporting 22 Wood Frame Roof. 24 Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure 24 Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure 27 Detail A.8.3. Second Floor Walls of a Two-Story ICF Structure 28 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 26 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 26 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 26
2nd Story Wood Frame Walls, Floor and Roof
and Roof
Lintel Details and Tables63
Concentrated Point Load Table90
Stair Opening Tables
Laterally Supported Foundation Wall Detail and Table
Laterally Supported Foundation Wall Detail and Table
Laterally Supported Foundation Wall Detail and Table
Laterally Supported Foundation Wall Detail and Table
Laterally Supported Foundation Wall Detail and Table
Laterally Supported Foundation Wall Detail and Table 94 Laterally Unsupported Foundation Wall Detail and Table (Knee Wall) 95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)
Laterally Supported Foundation Wall Detail and Table 94 Laterally Unsupported Foundation Wall Detail and Table (Knee Wall) 95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)
Laterally Supported Foundation Wall Detail and Table 94 Laterally Unsupported Foundation Wall Detail and Table (Knee Wall) 95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)

This page left intentionally blank.

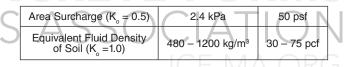
The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Design Limitation

The design tables included in this manual were determined based on the parameters provided in this section. These tables cannot be used if the proposed construction does not meet all the parameters provided in this section or in the tables.

1. Design Parameters

- 1.1 These tables only apply to residential buildings conforming to Part 9 of the 2015 National Building Code of Canada (NBCC).
- 1.2 If the proposed construction does not meet the design or applicability of parameters noted herein, a local design professional shall be retained to prepare the design in accordance with applicable standards.
- 1.3 This design manual applies only to flat ICF walls (concrete core of uniform thickness). All walls must line up vertically.
- 1.4 In case this document conflicts with design codes, standards and building regulations, the code provisions shall apply.
 - 5 The design and construction of all work shall conform to the latest editions of the NBCC, the local building code, local regulations and bylaws and the occupational health and safety act.
- 1.6 These tables have been designed to resist gravity, wind and earthquake forces in accordance with the 2015 NBCC for the criteria indicated in the design limitations and in the design tables.
- 1.7 Design is limited to one (1) floor below grade and a maximum of two (2) stories above grade.
- 1.8 The maximum building dimensions are:


Building Area	300 m ²	3200 ft ²
Maximum Building Dimension	24.4 m	80 ft
Building Aspect Ratio (Length:Width)		
$S_{a,ICF} \leq 0.2$	2.5:1	
S _{a.ICF} > 0.2	2:1	
Roof Clear Span	12.2 m	40 ft
Floor Clear Span	7.32 m	24 ft
Second Floor Wall Height	3.05 m	10 ft
Main Floor Wall Height	4.88 m	16 ft
Foundation Wall Height	3.66 m	12 ft

Note: $S_{a,\text{ICF}}$ is the equivalent spectral response acceleration for ICF walls, provided in Appendix A.

1.9 The maximum unfactored gravity loads are:

Roof Snow	4.0 kPa	84 psf
Floor Live	1.9 kPa	40 psf
Roof Dead	0.7 kPa	15 psf
Floor Dead	0.7 kPa	15 psf
Concrete Density	23.6 kN/m ³	150 lb/ft ³
Brick Veneer Density	20.0 kN/m ³	128 lb/ft3
Floor Clear Span	7.32 m	24 ft
Second Floor Wall Height	3.05 m	10 ft
Main Floor Wall Height	4.88 m	16 ft
Foundation Wall Height	3.66 m	12 ft

1.10 The lateral soil pressures against below grade walls are:

1.11 The wind loads are indicated in the design tables.

1.12 Seismic limits in wall analysis and design are based on $S_a(0.2)$ and $S_a(0.5)$ values. In order to simplify the tables, an equivalent seismic spectral response acceleration for ICF walls, $S_{a,ICF}$ is defined and provided in Appendix A. Equivalent spectral response, $S_{a,ICF}$ is used to calculate the seismic shear loads as given in following equation and the limits are indicated in shear wall tables.

$$V_{seismic} = F_a S_{a,ICF} / R_d R_o$$

where $F_a = max (F_a(0.5))$ for soil type D or better = 1.47

1.13 The following peak ground acceleration (PGA) data was used in the analysis of below grade walls. These are the maximum associated values from Appendix C of the 2015 NBCC for the selected $S_a(0.2)$ values.

Sa(0.2)	0.25	0.7	1.20	1.75
PGA	0.16	0.434	0.724	1.04

- 1.14 Only seismic site classes A, B, C and D, as defined in Part 4 of the NBCC, are permitted.
- 1.15 Wall and lintel deflections have been limited to L/360.

1.16 The maximum building aspect ratio is the longest plan dimension divided by the shortest plan dimension of the building. Attached garages can be excluded from the aspect ratio calculation provided they are separated from the main building by ICF walls meeting the requirements of this guide.

2. Construction

- 2.1 Except as noted otherwise for specific conditions, the design assumes that ALL walls are laterally supported by the building foundation, roof and floor systems, designed by others. Roof and floor systems can be designed in accordance with part 9 of NBCC or building system manufacturers.
- 2.2 Foundation walls shall be laterally supported at the top and bottom prior to backfilling.
- 2.3 Provide lateral support at the bottom of the foundation wall in accordance with NBCC 2015 part 9.15.4.4. Alternatively, dowel the wall to the footing as per Table F. 1.
- 2.4 The contractor shall make adequate provision for construction loads and temporary bracing to keep the structure plumb and in true alignment at all phases of construction.
- 2.5 Hydrostatic pressure due to water build-up has not been included in the design and analysis. Backfill shall be drained in accordance with NBCC 2015 9.4.4.6.
- 2.6 Surface grading around the foundation is to slope away from building to allow surface water to drain away.
- 2.7 Provide adequate frost protection for all foundation walls and footings, both during construction and in the final installation.
- 2.8 Construction joints shall be made and located so as not to impair the strength of the structure. All specified reinforcing bars shall have minimum lap lengths across all construction joints.
- 2.9 Construction joints shall not be installed within 610 mm (2ft) of a wall opening.
- 2.10 All dimensions are in millimeters unless noted otherwise.
- 2.11 It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

3. Concrete

3.1 Concrete work shall conform to the latest editions of CSA A23.1,2,3 for materials and workmanship.

3.2 The minimum 28-day compressive strength of concrete shall be 20 MPa.

- 3.3 Maximum size of aggregates in concrete walls with minimum concrete cover of 40mm, are to be 19mm (3/4") diameter. Maximum aggregate size shall be limited to 12.5mm (1/2") if the concrete cover is less than 40mm.
- 3.4 Concrete pours shall be terminated at locations of lateral support.
- 3.5 Use high frequency vibration to place all concrete. Extra care is needed when vibrating during concrete placement for the purpose of ensuring a homogeneous aggregate distribution, without segregation.
- 3.6 Take adequate measures to protect concrete from exposure to freezing temperatures and precipitation at least seven days after concrete placement.

4. Reinforcing Steel

- 4.1 Use Grade 400 deformed rebar placed in accordance with the manual of standard practice.
- 4.2 Reinforcement size, spacing and placement to be in accordance with notes and design tables for above grade walls, below grade walls and lintels.
- 4.3 10M bars may be installed as distributed steel where 15M bars are specified provided they are installed at half the spacing required for 15M bars. 15M bars may be installed as distributed steel where 10M bars are specified, but must be installed at the same spacing as specified for the 10M bars.

4.4 The required number of bars specified for concentrated reinforcing steel can be converted to 15M bars as per the following conversion table:

	rated Reinforcing Bars of Shear Walls										
Specified 10M Equivalent 15M											
2	1										
3 or 4	2										
5 or 6	3										

4.5 Maintain a minimum concrete clear cover and reinforcement spacing of 40mm (1 ½") for all reinforcing steel, except 20mm (3/4") cover is permitted for below grade walls of heated buildings. The minimum concrete covers must be maintained for vertical bars in below grade walls.

4.6 Where bars within a lintel cannot achieve a minimum concrete side cover and spacing of 40mm (1½"), the bars are required to be bundled. The following notes apply to all bundled bars:

- a) Groups of parallel reinforcing bars bundled in contact, assumed to act as a unit, with not more than four in any one bundle, may be used. Bundled bars shall be tied, wired, or otherwise fastened together to ensure that they remain in position.
- b) Bundled bars shall not be spliced over the span of any lintel.

4.7 Minimum bar lap length shall be:

4.8

4.9

- a) 450 mm (18") for 10M bars
- b) 650 mm (26") for 15M bars
- c) 750 mm (30") for 20M bars
- Standard hook lengths shall be:
 - a) 200 mm (8") for 10M bars
 - b) 250 mm (10") for 15M bars
 - c) 300 mm (12") for 20M bars

Maximum transverse spacing (gap) between non-contact parallel bars spliced by lap splices, shall not exceed the lesser of one-fifth of the required lap splices length or 150mm.

- 4.10 Guidance was taken from PCA 100-2017 Prescriptive Design of Exterior Walls for One- and Two-Family Dwellings where steel reinforcement does not meet the minimum requirements of CSA A23.3 Clause 14.1. References to research conducted by PCA for these conditions are included in PCA 100-2017.
- 4.11 Where the vertical wall reinforcement spacing exceeds maximum spacing requirements according to CSA A23.3 Clause 14.1 the design capacity is at least one third more than required.
- 4.12 Horizontal temperature and shrinkage reinforcing steel may be less than specified in CSA A23.3. This is due to ideal curing conditions within the ICF system, which reduce the risk of cracking. In addition, finishes are not applied directly to the concrete wall; therefore, the risk of potential cracks propagating to the surface of the finishes is minimized.

5. Above Grade and Below Grade Walls

- 5.1 Wall thicknesses given in above and below grade wall tables are the nominal thicknesses. The actual thickness of the wall may vary by \pm 14".
- 5.2 Above grade and below grade walls are designed to resist out-of-plane and in-plane loads by providing the specified reinforcing steel.

- 5.3 Provide horizontal and vertical distributed steel throughout all walls as described in the Distributed Reinforcing Steel section.
- 5.4 Provide additional concentrated horizontal and vertical steel around door and window openings, beside stair openings, under point loads, and at the ends of all walls and at all corners as described in the Window and Door Openings, Stair Openings, Concentrated Point Loads and Shear Walls sections.
- 5.5 The specified reinforcing is applicable to building with walkout basements. However, the global slope stability and building stability for unbalance soil pressures created by the walkout condition is by others.
- 5.6 Provide 600 mm (24") × 600 mm (24") horizontal bent dowel at each corner of the walls. Size and spacing of the dowel should match the horizontal reinforcement as per above and below grade tables.

5.1 Distributed Reinforcing Steel

5.1.9

- 5.1.1 Horizontal reinforcing is to consist of 10M or 15M continuous bars at 300 mm (12") o.c. to 900mm (36") o.c., in accordance with the tables.
- 5.1.2 Provide one continuous horizontal bar at maximum 150mm (6") from the top of the wall and at all floor levels.
- 5.1.3 Tables B. 1. 1, B. 2. 1, B. 3. 1 and B. 4. 1 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 6" tie spacing.
- 5.1.4 Tables B. 1.2, B. 2. 2, B. 3. 2 and B. 4. 2 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 8" tie spacing.
- 5.1.5 Tables A. 1. 1 and A. 2. 1 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 6" tie spacing.
- 5.1.6 Tables A. 2. 1 and A. 2. 2 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 8" tie spacing.
- 5.1.7 Interpolation within the tables is not permitted.
- 5.1.8 Any table may be used where the local wind and seismic design values do not exceed the maximum values given in the table.

All basement walls in a building with a walkout condition shall be reinforced as a below grade wall for the maximum backfill height. Place the reinforcing in the center of the wall where the basement wall does not support any backfill.

- 5.1.10 The vertical distributed reinforcing bar spacing given in millimeters in the tables is the nominal dimension, the bar spacing in inches is the exact dimension. The vertical bar spacing is given as multiples of the form web spacing.
- 5.1.11 For walls below grade, the vertical reinforcing is to be placed on the inside face of the wall as shown in Detail B. 1.
- 5.1.12 For walls above grade, the vertical reinforcing is to be placed in the middle of the wall as shown in Detail A. 1.
- 5.1.13 Walls above grade formed using 300mm (12") forms shall have all distributed steel placed in two equal layers. One layer is to be placed in the exterior third of the wall and the other layer in the interior third of the wall as shown in Detail A. 2.
- 5.1.14 The height of an above grade wall is the distance from the top of the floor connection at its base to the bottom of the floor or roof connection at its top, as shown in Detail A. 12.
- 5.1.15 The height of a below grade wall is the distance from the top of the basement floor slab to the point of bearing for the floor system, as shown in Detail A. 12.
- 5.1.16 Backfill height against a below grade wall is the distance from the top of the basement floor slab to the finished exterior grade level.
- 5.1.17 Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where

18" o.c. spacing is specified for horizontal bars as shown in Detail A. 3.

- 5.1.18 Provide three horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars as shown in Detail A. 4.
- 5.1.19 Provide four horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars as shown in Detail A. 5.
- 5.1.20 Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars as shown in Detail A. 6.
- 5.1.21 Distributed reinforcing in a wall shall not be less than that required for the wall above.

5.2 Shear Walls

- 5.2.1 Shear walls are solid ICF wall segments between openings and corners.
- 5.2.2 Openings 150mm (6") in diameter and less are permitted within a shear wall, provided they do not occur within 300mm (12") of the ends of the shear wall.
- 5.2.3 Shear walls are designed for building with or without walkout basement. Wall configurations for building without and with walkout basement are shown in Detail A. 7 and Detail A. 8, respectively. Wall configurations for walkout basement walls is shown in Detail A. 9.
- 5.2.4 A minimum number and length of shear walls is required in all four sides of the building on all levels in the building as specified in shear wall tables (A.3. to A.11.) for above grade walls. This is to replace the requirements for 1200mm long wall segments at each corner in exterior walls specified in NBCC 9.20.17.3.(1) and 9.20.17.4.(1).
- 5.2.5 Below grade walls shall have the same number and length of shear walls as required for the walls immediately above.
- 5.2.6 All walls shall be proportionally and evenly distributed in both the transverse and longitudinal direction of the building.
- 5.2.7 A minimum number of full height vertical reinforcing bars are to be installed at the ends of all required shear walls in accordance with shear wall tables (A.3. to A.11.) for the number and length of shear walls provided. These bars are referred to as concentrated reinforcement and are in addition to the distributed reinforcement specified elsewhere.
- 5.2.8 The concentrated vertical reinforcement at the ends of each required shear wall is to be placed in accordance with Detail A. 10.
- 5.2.9 Matching dowels are to be provided for the concentrated and distributed vertical reinforcement at the base of all required shear walls into floor below as shown in Detail A. 11.
- 5.2.10 Horizontal reinforcement in shear walls where $S_{a,ICF} > 0.2$ shall be terminated at the ends of the wall with a standard hook.
- 5.2.11 Choose the first column in shear wall tables (A.3. to A.11.) that meets the minimum required number and lengths of shear wall to determine the minimum number of bars to install at the ends of all shear walls (sides of all openings and at each corner). Therefore, first check if there is at least one shear wall that meets the minimum length requirement given in the table for one shear wall. If not, then check if there are at least two shear walls that meet the minimum length requirement given in the table for two shear walls, and so on. When a number of shear walls is found that meets the minimum length requirements, use that column to determine the required concentrated reinforcement at the ends of those shear walls.

5.3 Concentrated Point Loads on Walls

5.3.1 All point loads, such as concentrated loads created by girder trusses, columns and beams, shall bear directly on top of the concrete wall, and shall not be hung or in any other manner

create an eccentric loading on the concrete wall. Provide beam pockets, as necessary.

- 5.3.2 The minimum length of solid wall without openings directly below point loads, such as concentrated loads created by girder trusses, columns and beams, shall be 6'-0". In addition to the wall reinforcing required in the following tables, two additional 15M vertical bars shall be installed directly below the point load. This length of solid wall may contain a corner.
- 5.3.3 Use Table C. 1 for the maximum unfactored point load that can be applied on a solid wall without opening if length of the wall is less than 6'-0".
- 5.3.4 Maximum unfactored point loads given in Table C. 1 are only the wall capacity. It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

5.4 Window and Door Openings

- 5.4.1 The cumulative width of openings in above grade walls shall not be more than 70% of the total wall length.
- 5.4.2 The cumulative width of openings in below grade walls shall not be more than 25% of the total wall length.
- 5.4.3 Openings in below grade walls shall not exceed a maximum width of 1.83m (6'-0") and a maximum height of 0.914m (3'-0").
- 5.4.4 The length of solid wall between two openings in below grade walls shall be equal to the average width of the openings and at least 1.22m (4'-0").
- 5.4.5 A minimum of 2-10M bars is to be installed completely around all sides of openings.
- 5.4.6 Provide additional horizontal reinforcing steel directly above the opening as required for lintels.
- 5.4.7 Horizontal bars above and below the opening shall extend a minimum of 610mm (24") past opening.
- 5.4.8 Vertical bars on each side of the opening shall extend the full height of the wall.

5.4.9 Distributed vertical reinforcing steel that is interrupted by an opening shall be replaced by an equal amount of concentrated vertical reinforcing steel with half placed on each side of the opening. The additional steel is to be evenly distributed within a distance equal to half the opening width, up to a maximum of 1.22m (4'-0"), from each side of the opening.

5.4.10 If the spacing of the additional concentrated vertical reinforcing required on each side of openings, described in the previous note, is less than 150mm (6"), a local design professional shall be retained to prepare the design in accordance with applicable standards.

5.4.11 Provide additional vertical reinforcing at the sides of openings as required at the ends of shear walls.

5.4.1 Lintels

- 5.4.1.1 All concrete wall segments above openings are to be considered lintels.
- 5.4.1.2 The top of all lintels is to be laterally supported by the roof and floor systems, designed by others.
- 5.4.1.3 Lintels shall be a minimum of 200mm (8") deep.
- 5.4.1.4 Lintel bottom reinforcing is to be installed a maximum of 89mm (3½") from the bottom of the lintel and is to extend a minimum of 610mm (24") past the wall opening.
- 5.4.1.5 A minimum of 2-10M bars is to be installed completely around all sides of openings, as shown in Detail L. 1.
- 5.4.1.6 Where stirrups are required for lintels with uniformly distributed load, they shall be single 10M hook stirrups installed around bottom and top bars over the given end distance at each side of the beam as shown in Detail L.2.
- 5.4.1.7 Where stirrups are required for lintels with concentrated load, they shall be single 10M hook stirrups installed around

bottom and top bars over the whole length of the beam. 5.4.1.4.

- 5.4.1.8 Minimum lintel reinforcing is to consist of bottom bars indicated in the design tables, along with horizontal 10M continuous wall reinforcing at 406mm (16") on center, and a minimum of 1-10M top bar located 50mm (2") from the top of the lintel, as shown in Detail L. 3.
- 5.4.1.9 Provide a minimum of three stirrups in all lintels at the spacing indicated in the tables when S_{a} (0.2) > 0.4.
- 5.4.1.10 The lintel design tables are only applicable for uniformly distributed gravity line loads and point loads, such as concentrated loads created by girder trusses, columns and beams.
- 5.4.1.11 Concentrated load lintel tables consider only a single concentrated load acting on anywhere along the lintel span.
- 5.4.1.12 The lintel tables do not consider uniform and concentrated load to act simultaneously on the lintel.
- 5.4.1.13 The uniformly distributed load (UDL) is calculated by multiplying the roof and/or floor loads, including snow load (SL), live load (LL) and dead load (DL), by the tributary width (TW) of the roof and/or floor. The tributary width is determined by adding half the span of each rafter/joist bearing on the concrete lintel. For example, the UDL for a lintel supporting floor joists spanning 10'-0" and roof trusses spanning 30'-0" on one side only is calculated as follows:

$$JDL = TW_{FLOOR} * (LL_{FLOOR} + DL_{FLOOR}) + TW_{ROOF} * (SL_{ROOF} + DL_{FROOF})$$

UDL = 275 lbs/ft + 1485 lbs/ft = 1760 lbs/ft

- 5.4.1.14 The weight of walls above the lintel has been included in the design of the lintel tables and does not need to be added to the UDL calculated as described above.
- 5.4.1.15 Where there is less than 305mm (12") of wall between openings, the lintel shall be reinforced to span over both openings, as shown in Detail L. 4.
- 5.4.1.16 Where there is less than 610mm (24") of wall between openings, and openings are greater than 1.53m (5'-0") in length, the lintel shall be reinforced to span over both openings, as shown in Detail L. 5.

5.5 Stair Openings

- 5.5.1 Additional reinforcement is to be provided in exterior walls where a stair opening interrupts the required lateral support provided by the floor framing.
- 5.5.2 Table A. 12. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of above grade walls at stair opening.
- 5.5.3 Table B. 5. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of below grade walls at stair opening. Below grade walls at stair openings are designed for a backfill equivalent fluid density of 480 kg/m3 and a maximum Sa(0.2) of 0.7. Reinforcement design of below grade walls at stair openings shall be reviewed by a professional engineer if the wall does not meet the requirement of this table.
- 5.5.4 Lateral restraint of the wall is to be provided by the floor framing on each side of the stair opening, by others.

5.5.5 The spacing of distributed vertical reinforcement is to be reduced for a distance of 1.22m (4'-0") on each side of the stair opening for above grade and below grade walls. The required spacing is calculated by the following equation and listed in Table A. 13.

(METRIC) $S_{\text{REDUCED}} = 2.44/(L_{\text{UNSUPPORTED}} + 2.44) * S_{\text{TABLES}}$

(IMPERIAL) $S_{\text{REDUCED}} = 8/(L_{\text{UNSUPPORTED}} + 8) * S_{\text{TABLES}}$

where

- S_{REDUCED} = the bar spacing (mm/in) required at the sides of the stair opening.
- S_{TABLES} = the required bar spacing (mm/in) for a laterally supported wall as determined from above grade and below grade walls tables.
- L_{UNSUPPORTED} = the length of wall (m/ft) that is laterally unsupported as a result of a stair opening in the floor framing.
- 5.5.6 If the stair opening is out of the scope of design limitations for stair opening table, additional distributed horizontal reinforcing bars are to be added at the stair opening as specified by a professional engineer.

5.6 Laterally Supported Unreinforced Foundation Wall

- 5.6.1 Foundation walls in this section are designed for backfill equivalent fluid density of 480 kg/m³ in accordance with section 9.4.4.6 of NBC 2015 & OBC 2012r2020.
- 5.6.2 If the foundation wall is laterally supported at the top (e.g. by floor joists) and meets all the requirements of NBC 2015 section 9.15.4, and supports only wood frame construction above, a 20 MPa unreinforced concrete wall is adequate for the specific wall and backfill height, as per NBC 2015 table 9.15.4.2.A, shown in Detail B. 2.
- 5.6.3 Use below grade wall tables if the height of the wall and / or backfilled soil is greater than the maximum values of Table B.6.
- 5.6.4 Use below grade wall tables for walls supporting ICF wall above.

5.7 Laterally Unsupported Foundation Walls (Knee Wall) with Wood Framing Above

If the foundation wall is not supported at the top (e.g. by floor joists) and supports only wood frame construction above, the design can follow the knee wall design as shown in Details B.3 and B.4. The design includes both the footing sizing and reinforcing of the footing and wall.

- 5.7.2 If heights of backfilled soil and / or foundation wall are greater than what shown in these details, reinforcement design of the wall must be reviewed by a professional engineer.
- 5.7.3 Foundations are to bear directly on material suitable for 75 kPa (1566 psf) bearing pressure.

6. Wood Ledger Connection

- 6.1 Anchor bolts are designed to transfer vertical load of floor to the ICF wall. Design of floor diaphragm by others.
- 6.2 Design loads are 40psf (1.9 kPa) floor live load, 15psf (0.7 kPa) floor dead load.
- 6.3 Anchor bolts are to be staggered as shown in Detail C. 1. Use Table C. 2. for size and spacing of the anchors.

7. Brick Ledge

5.7.

- 7.1 The concrete ledge is to support uniformly distributed loads only. It is not to support concentrated load. A brick ledge section is shown in Detail C. 2.
- 7.2 Table C. 3. provides the brick ledge capacity as the total height of brick veneer or tributary width of a floor that can be supported per unit length of the brick ledge.
- 7.3 The capacity given in Table C. 3. is only for the capacity of the brick ledge. The veneer height may be limited by other

building code requirement or manufacturer's installation requirements.

- 7.4 The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing.
- 7.5 The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer.
- 7.6 The maximum brick height given does not account for windows. To include the effect of windows, it is necessary to calculate an effective brick height.
- 7.7 The ledge reinforcement is 10M hooked rebar, as shown in Detail C. 2 or Fox Blocks xLerator as shown in Detail C. 3. It is to be placed 6" or 8" on center matching the tie spacing of ICF blocks.

8. Strip Footing

8.8

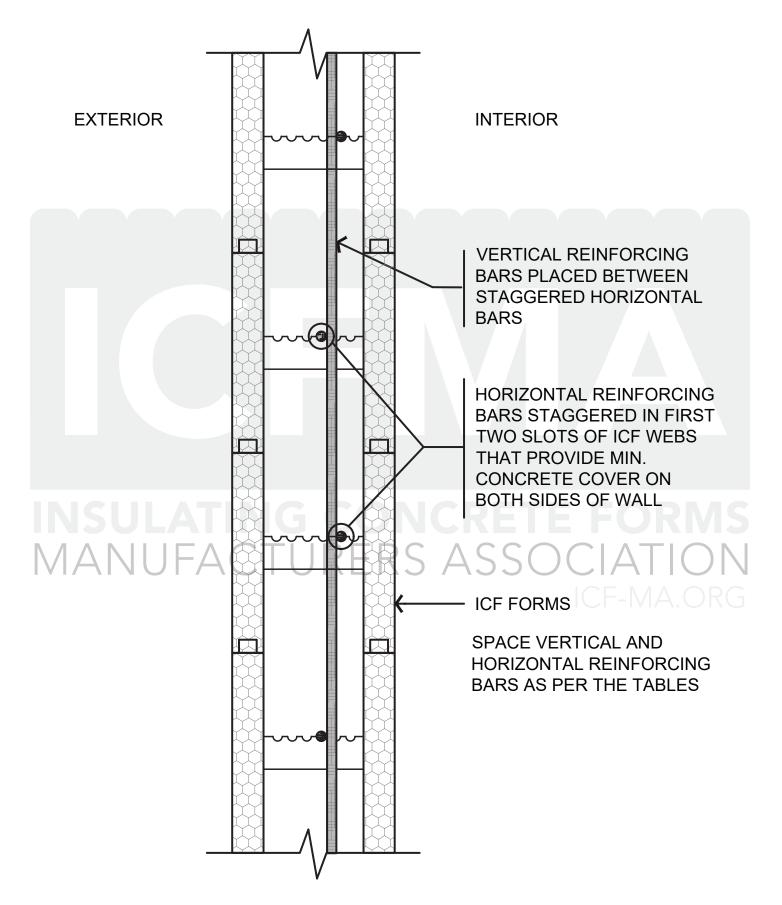
8.9

- 8.1 Tables F. 2. to F. 4. provides minimum width and thickness of footing for different loadings and soil bearing pressures.
- 8.2 Soft areas uncovered during excavation shall be subexcavated to sound material and filled with clean and free drained granular soil.
- 8.3 Protect soil from freezing adjacent to and below all footings.
- 8.4 All footings are to be reinforced with 2-15M continuous bars, as per Detail F. 1.
- 8.5 Tables F. 2. to F. 4. do not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:
 - a) Every 12'-0" of masonry veneer for 3000psf soil bearing capacity.
 - b) Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.
 - c) Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
 - d) Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.
- 8.6 The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.
- 8.7 Provide footing dowels as shown in Detail F. 1.
 - Footing dowels are 10M or 15M bars embedded 6" or 8" into the footing. Dowels size and spacing is given in Table F. 1.

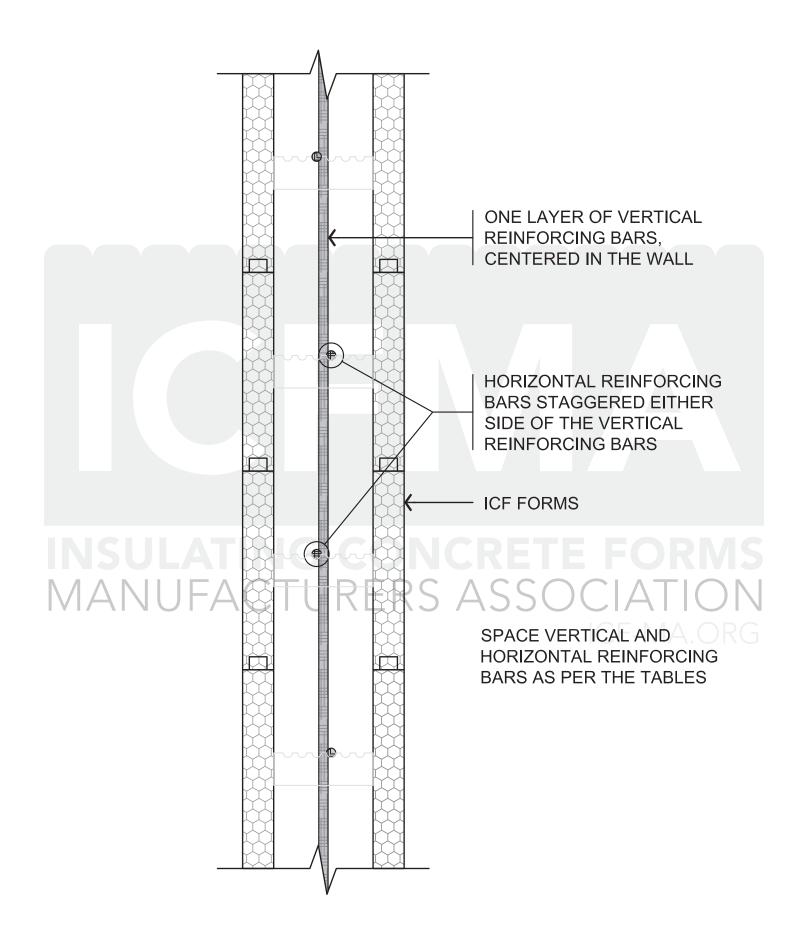
Provide bent dowels as per Note. 4 of Table F. 1, at shear walls locations matching the size and spacing of vertical bars of the shear walls.

Details & Tables Index

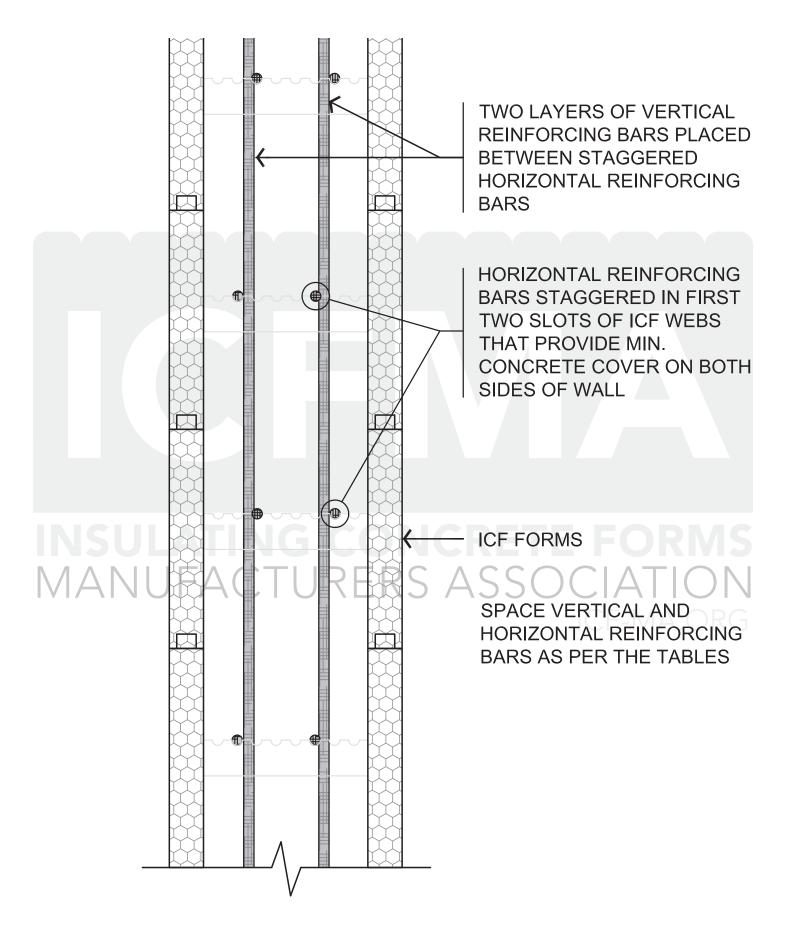
- 18 Detail A.1. Above Grade Wall Reinforcing Placement for 6," 8" and 10" Thick Walls.
- 19 Detail A.2. Above Grade Wall Reinforcing Placement for 12" Thick Walls.
- 20 Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)
- 20 Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.
- 21 Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.
- 21 Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)
- 22 Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
- 22 Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 23 Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
- 24 Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
- 25 Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 26 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
- 27 Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.
- 28 Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
- 29 Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.
- 30 Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof. Walls, Floor, and Roof.
- 31 Detail A.10. Shear Wall Concentrated Reinforcing Placement.
- 32 Detail A.11. Shear Wall Dowels.
- 33 Detail A.12. Above and Below Grade Wall Height
- 17 Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.
- 94 Detail B.2. Laterally Supported Foundation Wall
- 95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)
- 96 Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer
- 97 Detail C.1. Wood Ledger Connection
- 98 Detail C. 2. Brick Ledge Connection
- 98 Detail C.3. Fox Blocks xLerator Ledge Reinforcement
- 100 Detail F.1. Footing Dowel
- 63 Detail L. 1. Reinforcing Around Openings.
- 64 Detail L. 2. Lintel Stirrup Detail.
- 64 Detail L. 3. Lintel Section
- 65 Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.
- 65 Detail L. 5. Lintel Span with Less Than 610mm (24") of Wall Between Openings, and Openings Are Greater Than 1.53m (5'-0") in Length.

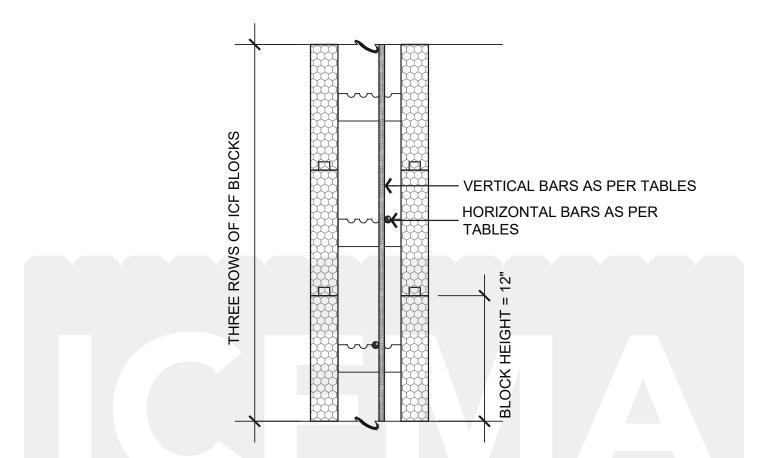

- 50 Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF \leq 0.2 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05 for ICF Walls with 6" Tie Spacing
- 51 Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for Walls with 8" Tie Spacing
- 52 Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, q _{1/50} \le 1.05 for ICF Walls with 6" Tie Spacing
- Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, q _{1/50} \le 1.05 for ICF Walls with 8" Tie Spacing
- Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building Without Walkout Basement)
- Table A.4 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.2$ and Hourly Wind Pressure, $0.5kPa < q_{1/50} \leq 0.75kPa$ (in a Building Without Walkout Basement)
- Table A.5 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.75kPa < q_{1/50} \le 1.05kPa$ (in a Building Without Walkout Basement)
- 57 Table A.6 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05$ kPa (in a Building Without Walkout Basement)
- Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building With Walkout Basement)
- Table A.8 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, 0.5kPa < $q_{1/50} \le 0.75$ kPa (in a Building With Walkout Basement)
- 61 Table A.10 Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05$ kPa (in a Building With Walkout Basement)
- 62 Table A.11 Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,\rm ICF} \leq 0.4$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05 \rm kPa$
- 91 Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings
- 93 Table A.13. Bar Spacing Required at Each Side of the Stair Opening
- 34 Table B.1.1.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, q_{1/50} \leq 1.05kPa, for ICF Walls with 6" Tie Spacing
- 35 Table B.1.1. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 36 Table B.1.2.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 8" Tie Spacing
- 37 Table B.1.2. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 8" Tie Spacing

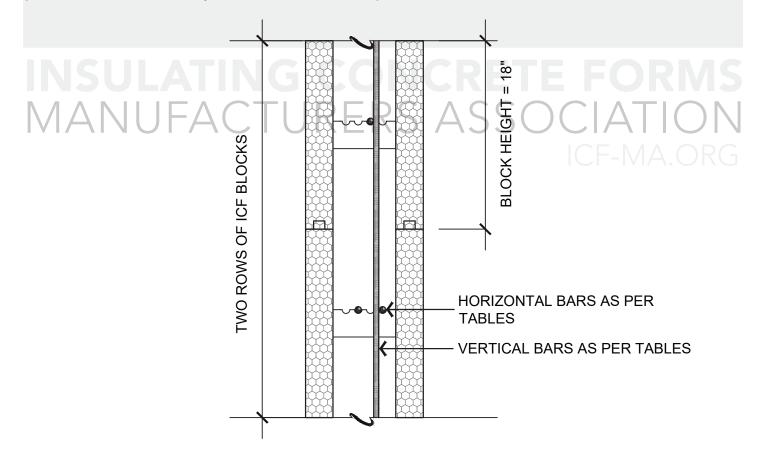
- 39 Table B.2.1. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.25 < Sa(0.2) \leq 0.70 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 40 Table B.2.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 41 Table B.2.2. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 42 Table B.3.1. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6" Tie Spacing
- 43 Table B.3.1. Continued Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6" Tie Spacing
- 44 Table B.3.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 0.70 < Sa(0.2) ≤ 1.2 and Hourly Wind Pressure, $q_{1/50} ≤ 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 45 Table B.3.2. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 46 Table B.4.1. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, q_{1/50} ≤ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 47 Table B.4.1. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) \leq 1.75 and Hourly Wind Pressure, $q_{1/50} \leq$ 1.05kPa, for ICF Walls with 6" Tie Spacing
- 48 Table B.4.2. Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, 1.2 < Sa(0.2) ≤ 1.75 and Hourly Wind Pressure, $q_{1/50} ≤ 1.05$ kPa, for ICF Walls with 8" Tie Spacing
- 92 Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification Sa(0.2) \leq 0.7, Hourly Wind Pressure , $q_{_{1/50}} \leq$ 1.05 kPa, and Backfill
- 94 Table B.6. Maximum Height of Finish Ground Above Basement Floor
- 90 Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening
- 97 Table C.2. Floor Ledger Anchor Bolts Size and Spacing
- 99 Table C.3 Brick Ledge Load Capacity
- 130 Table C-3 (Continued)
- 131 Table C-3 (Continued)
- 132 Table C-3 (Continued)
- 133 Table C-3 (Continued)
- 134 Table C-3 (Continued)
- 135 Table C-3 (Continued)
- 136 Table C-3 (Continued)
- 137 Table C-3 (Continued)
- 138 Table C-3 (Continued)
- 139 Table C-3 (Continued)
- 140 Table C-3 (Continued)
- 141 Table C-3 (Continued)
- 142 Table C-3 (Continued)

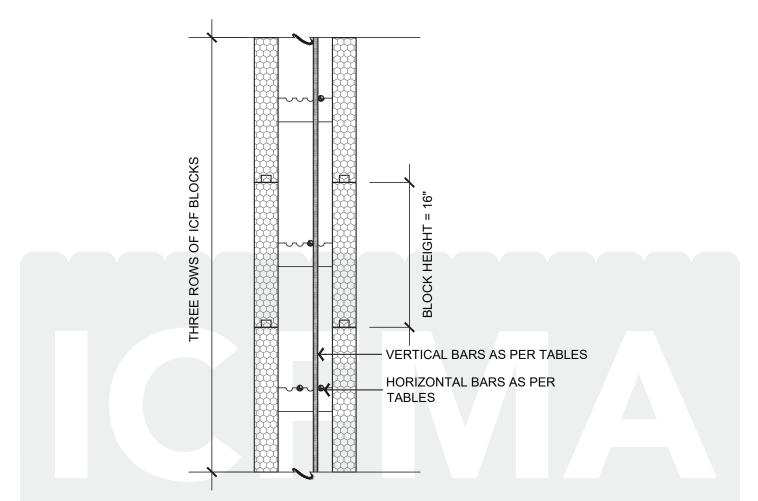

- 143 Table C-3 (Continued)
- 144 Table C-3 (Continued)
- 145 Table C-3 (Continued)
- 146 Table C-3 (Continued)
- 100 Table F.1- Footing Dowels Size and Spacing
- 101 Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads
- 102 Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤ 2kPa
- 103 Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤4kPa
- 66 Table L1 6" Lintel Reinforcement with Uniformly Distributed Load
- 67 Table L1 Continued
- 68 Table L1 Continued
- 69 Table L2 8" Lintel Reinforcement with Uniformly Distributed Load
- 70 Table L2 Continued
- 71 Table L2 Continued
- 72 Table L3 10" Lintel Reinforcement with Uniformly Distributed Load
- 73 Table L3 Continued
- 74 Table L3 Continued
- 75 Table L4 12" Lintel Reinforcement with Uniformly Distributed Load
- 76 Table L4 Continued
- 77 Table L4 Continued
- 78 Table L5 6" Lintel Reinforcement Concentrated Load
- 79 Table L5 Continued
- 80 Table L5 Continued
- 81 Table L6 8" Lintel Reinforcement Concentrated Load
- 82 Table L6 Continued
- 83 Table L6 Continued
- 84 Table L7 10" Lintel Reinforcement Concentrated Load
- 85 Table L7 Continued
- 86 Table L7 Continued
- 87 Table L8 12" Lintel Reinforcement Concentrated Load
- 88 Table L8 Continued
- 89 Table L8 Continued

This page left intentionally blank.

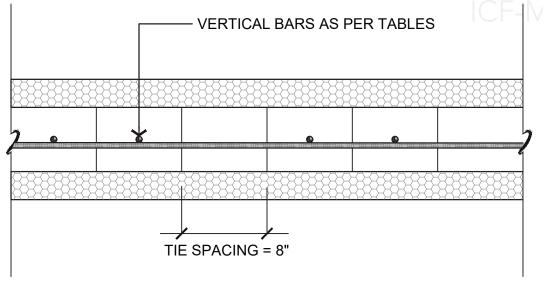

Below & Above Grade Walls Details and Tables


Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.

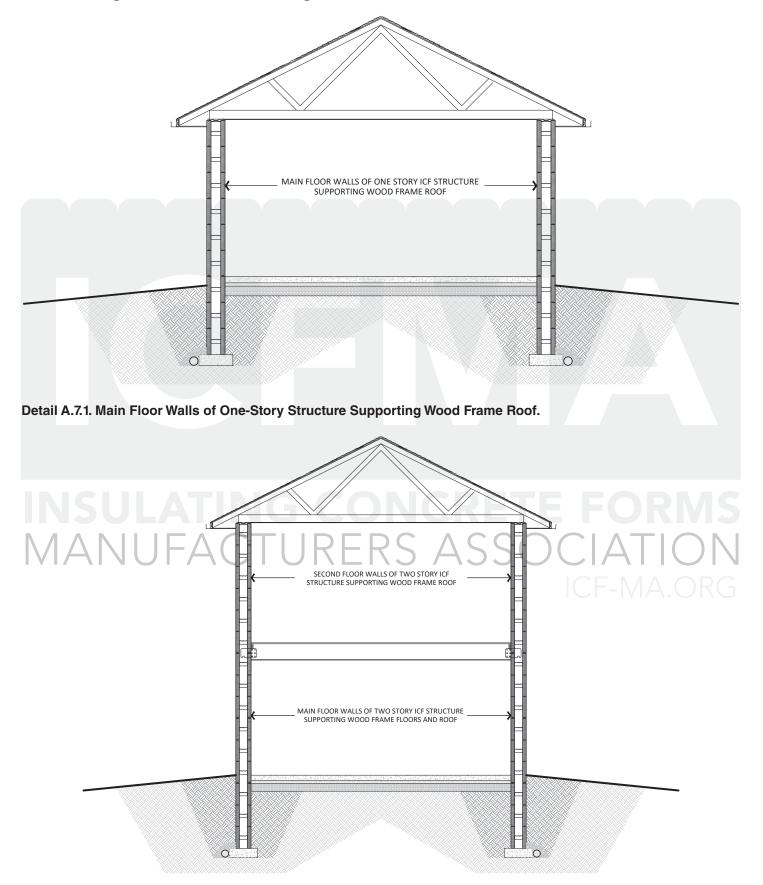

Detail A.1. Above Grade Wall Reinforcing Placement for 6", 8" and 10" Thick Walls.


Detail A.2. Above Grade Wall Reinforcing Placement for 12" Thick Walls.

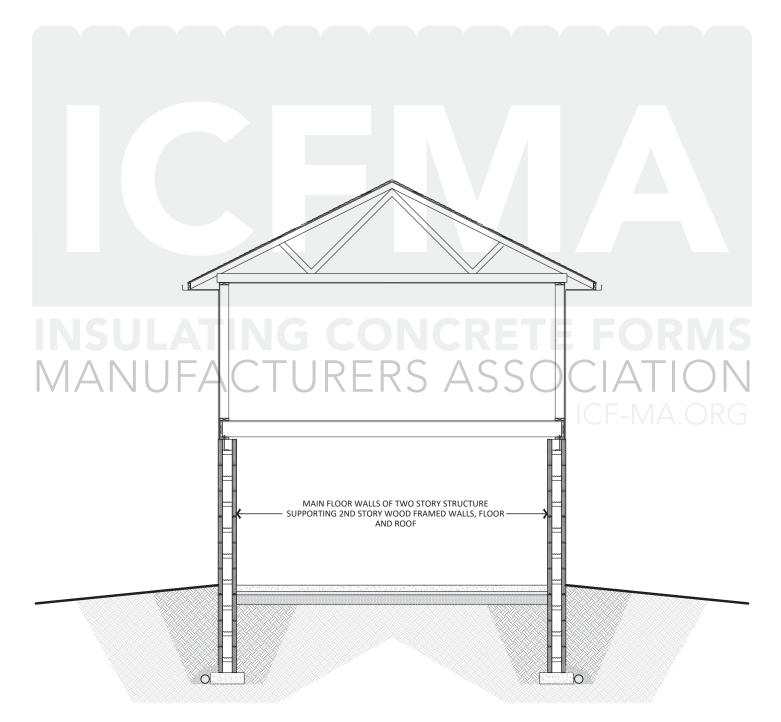
Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)



Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.

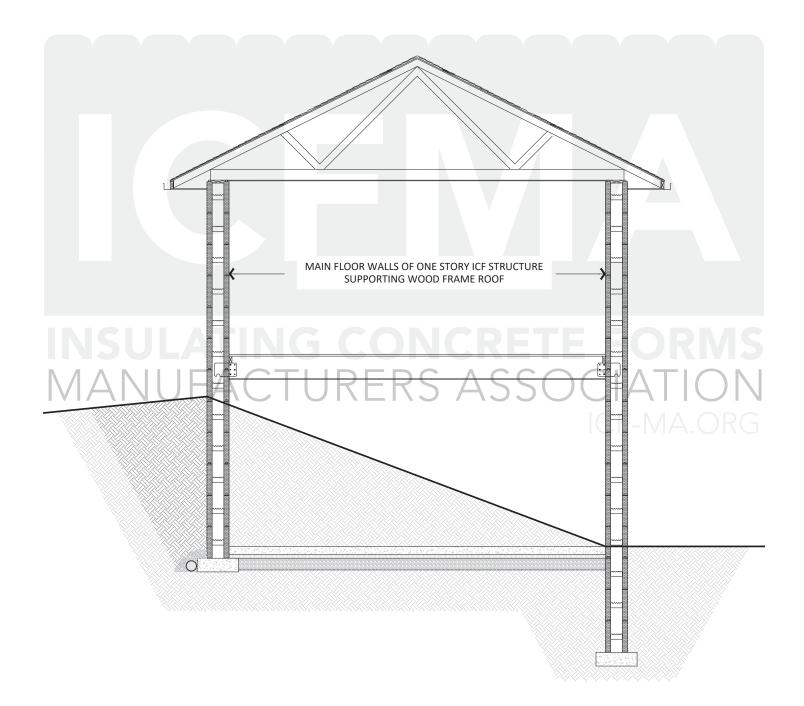

Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION

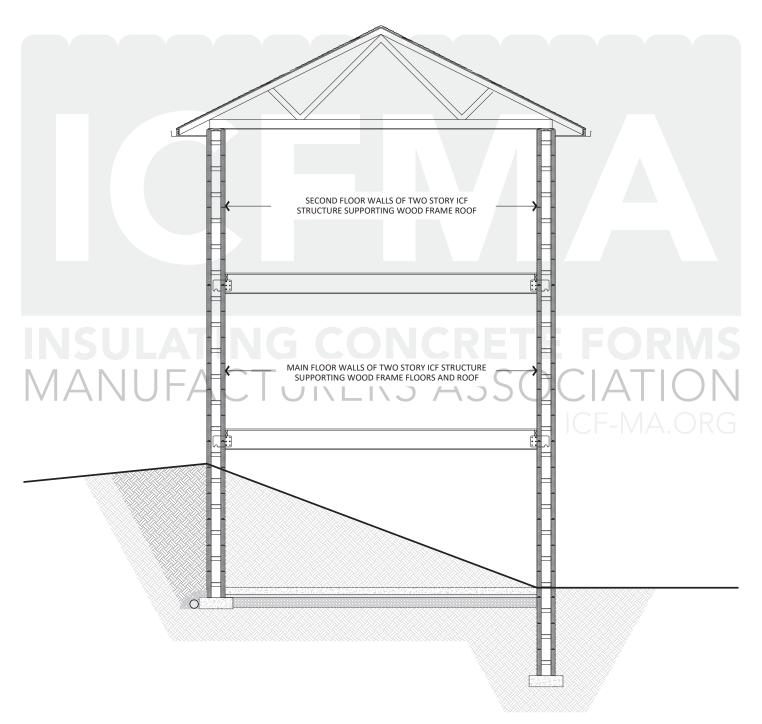


Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)

Wall Configurations in a Building Without Walkout Basement



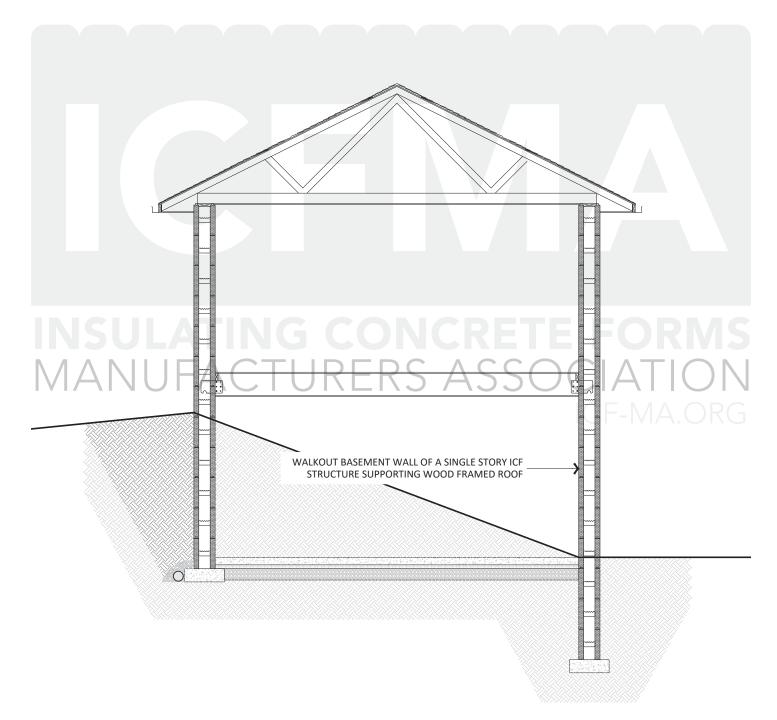
Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.



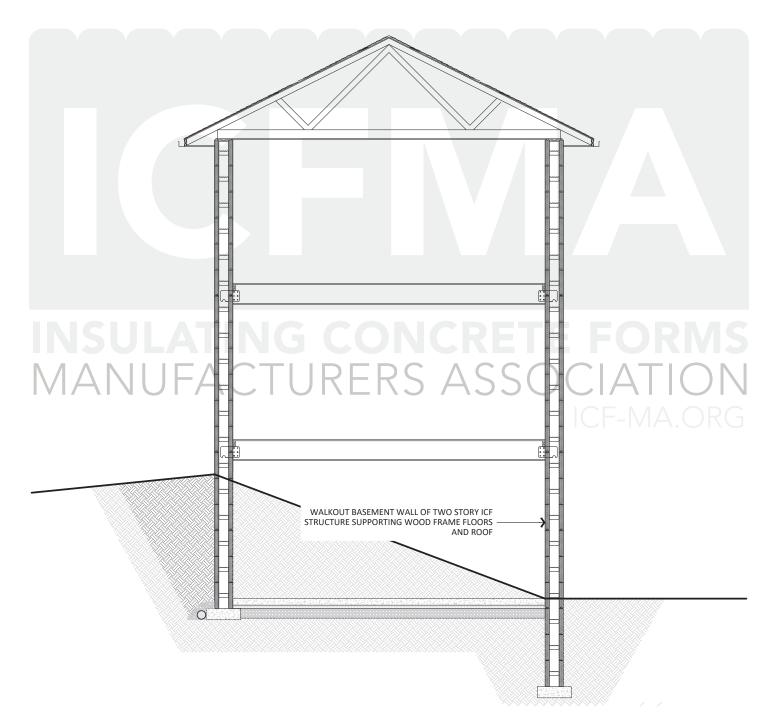
Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.

Wall Configurations in a Building with Walkout Basement

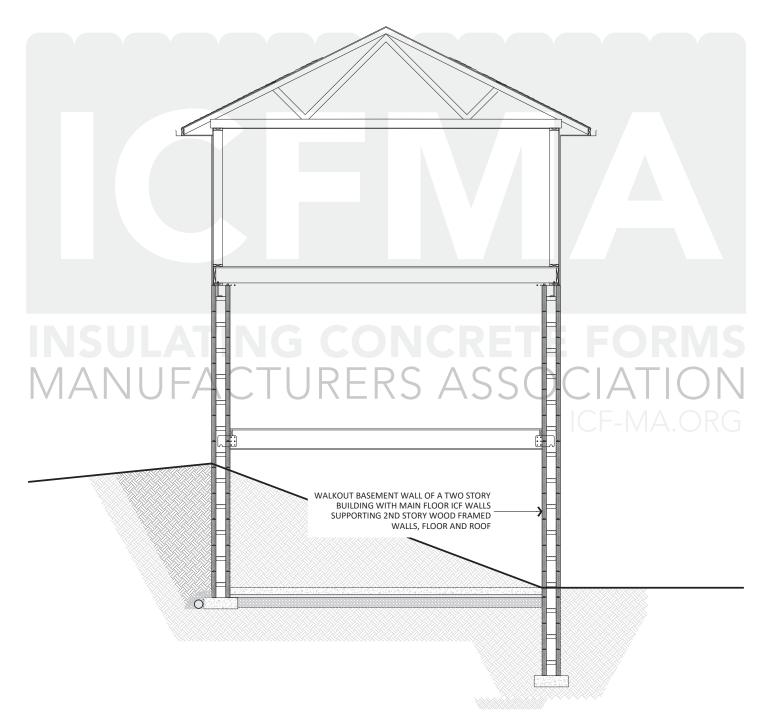
Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.

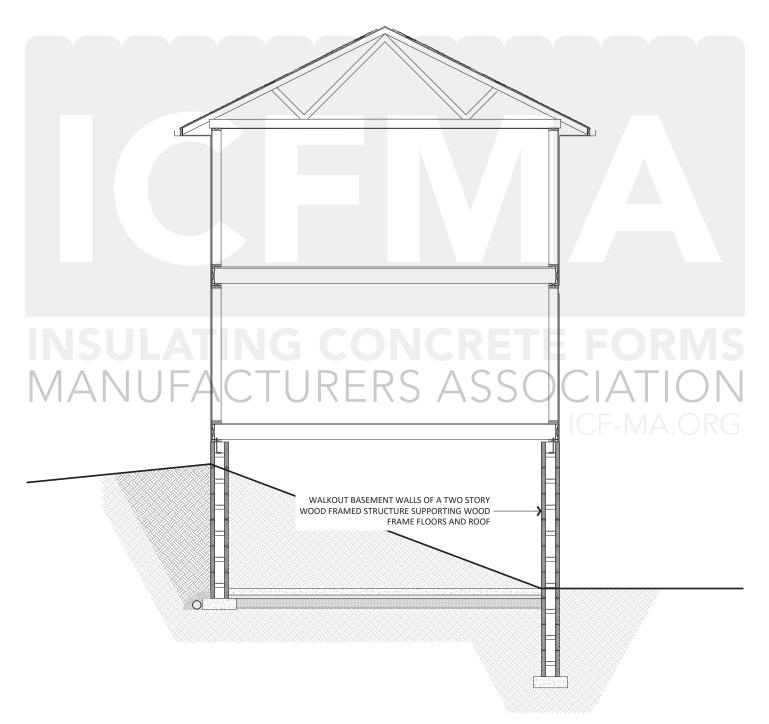


Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof & Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.

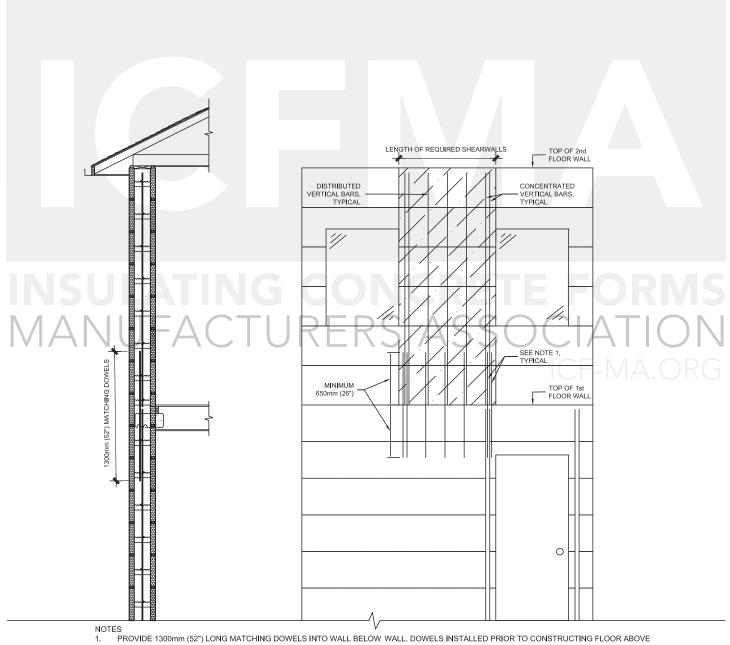


Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.

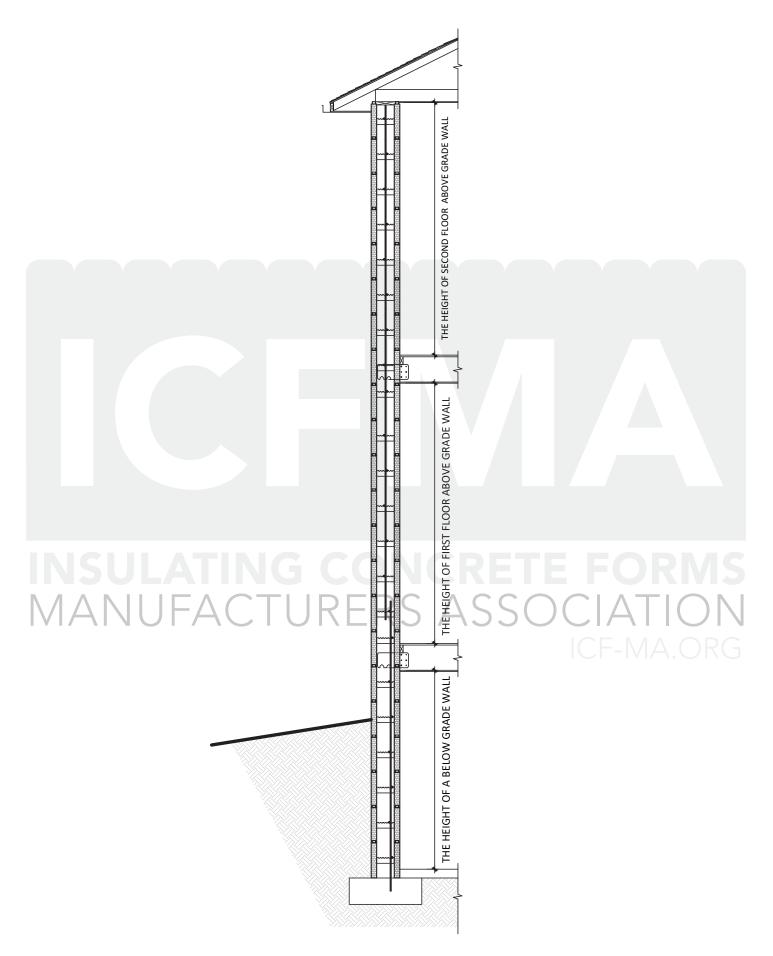

Walkout Basement Wall Configurations


Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.

Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.


Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.

Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof. Walls, Floor, and Roof.


	No. OF REINF'G BARS	150 mm (6") THICK	200 - 300 mm (8", 10", 12") THICK	
	2 BARS		•	
	3 BARS			
	4 BARS			
INS MA	UL 5 BARS NUFACT	G CECE		MS
	6 BARS			.ORG
	2. PROVIDE 1 1/2" (40mm)	S:) COVER TO REINFORCING BAF) CLEAR SPACING BETWEEN B/ E TO THE SIDES OF THE WALL	ARS, TYPICAL.	

Detail A.10. Shear Wall Concentrated Reinforcing Placement.

PROVIDE 1300mm (52") LONG MATCHING DOWELS INTO WALL BELOW WALL. DOWELS INSTALLED PRIOR TO CONSTRUCTING FLOOR ABOVE

Detail A.11. Shear Wall Dowels.

Detail A.12. Above and Below Grade Wall Height

Wall Height	Backfill Height													<u>`</u>	ize and	<u> </u>														
m	He	ight					180 k	a/m'	3 (30 p	ocf)		Backfil	l Equ	ivale	ent Fluid I	d Der	nsity		720 k	a/m'	3 (45 p	ocf)			M @ 900 M @ 750 M @ 600 M @ 900 M @ 600 M @ 900 M @ 600 M @ 900 M @					
(ft)	m (ft) 1.22 (4.0)		150 m	m (6") W	/all		n (8") V		250 m		Vall	300 mr	n (12") \	Nall	150 mr	m (6") V	Vall	200 mi		-	250 mn		Vall	300 mr	n (12") V	Nall				
	1.22	(4.0)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	10 M @	900	(36)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)				
	1.53	(5.0)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)				
2.44 (8.0)	1.83	(6.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)				
	2.13	(7.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)				
	2.44	(8.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)				
	1.22	(4.0)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)				
	1.53	(5.0)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)				
2.74	1.83	(6.0)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	600	(24)				
(9.0)	2.13	(7.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)				
	2.44	(8.0)	15 M @	300	(12)	15 M @	600	(24)	15 M @	900	(36)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)				
	2.74	(9.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)				
	1.22	(4.0)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)	10 M @	900	(36)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)				
	1.53	(5.0)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)				
0.05	1.83	(6.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)				
3.05 (10.0)	2.13	(7.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)				
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)				
	2.74	(9.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)				
	3.05	(10.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)				
	1.22	(4.0)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)				
	1.53	(5.0)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)				
	1.83	(6.0)	15 M @	450	(18)	15 M @	750	(30)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)				
3.35 (11.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)				
(11.0)	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @		(24)				
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @		(18)				
к л л	3.05	(10.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @		(18)				
V /	3.35	(11.0)	15 M @	-150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)	10 M @	900	(36)				
	1.53	(5.0)	15 M @ 15 M @	600 450	(24)	15 M @	750 600	(30)	10 M @	600 450	(24)	10 M @	900 600	(36)	15 M @ 15 M @	450 300	(18)	15 M @	600	(24)	10 M @ 15 M @	450	(18)	10 M @	750 900	(30)				
	2.13	(0.0)	15 M @	300	(18)	15 M @ 15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(24)	15 M @	300	(12)	15 M @	600 450	(24)	15 M @	750 600	(30)	15 M @	750	(36)				
3.66	2.13	(8.0)	15 M @	150	(12)	15 M @	450	(18)	15 M @	600	(30)	15 M @	900	(36)	15 M @	150		15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(30)				
(12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(10)	15 M @	450	(24)	15 M @	600	(30)	15 M @	150	(6) (6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(24)				
	3.05	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450 300	(10)	15 M @	450	(24)	15 M @	150	(6)	15 M @	150	(12)	15 M @	450 300	(10)	15 M @	450	(18)				
	3.35	(10.0)	15 M @	150	(6)	15 M @	150	(12)	15 M @	300	(12)	15 M @	450	(18)	10 10 10	130	(0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450 300	(10)				
	3.66	(12.0)			(9)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(10)				15 M @	150	(6)	15 M @	150	(12)	15 M @	300	(12)				
Llavinentel	Block H	leight of	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)				
Horizontal Reinforcement		Height	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)				
	of	16"			()			(/			(3-)			(32)			(3-)			()			()	1	1	()				

Table B.1.1.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Wall Height															ize and											
m	Hei	ight				ç	960 k	a/m	g (60 p	ocf)		Backfil	l Equ	ivale	ent Fluid I	d Der	nsity		200 k	ka/m	3 (75)	ocf)				
(ft)	m	(π)	150 mi	m (6") V	<i>l</i> all	200 mr		_	250 mn		Nall	300 mr	n (12") \	Vall	150 mr	m (6") V	Vall		m (8") W		250 mn		Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	10 M @	900	(36)
	1.53	(5.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
2.44 (8.0)	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)
	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	900	(36)	10 M @	450	(18)	10 M @	900	(36)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	750	(30)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	600	(24)
2.74	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
(9.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	10 M @	900	(36)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	750	(30)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)
	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)
3.05 (10.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	900	(36)	15 M @	600	(24)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	10 M @	600	(24)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)	10 M @	600	(24)
	1.83	(6.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
3.35	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
Λ/L	3.35	(11.0)			Δ	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	Δ '	5	5				15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	900	(36)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	750	(30)
	1.53	(5.0)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	10 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	900	(36)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	750	(30)
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)							15 M @	150	(6)	15 M @	300	(12)
	3.35	(11.0)							15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	(6)
	3.66	(12.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
Horizontal	Block H 12" ar	nd 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block of		10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

Table B.1.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Wall Height	Bac	kfill												<u>``</u>	ze and	<u> </u>										
m	Hei	ight					180 ⊾	a/m'	g (30 p	cf)		Backfil	l Equ	ivale	ent Fluid I	d Der	nsity		720 k	a/mʻ	3 (45 p	ocf)				
(ft)	m	(ft)	150 mi	m (6") W	Vall	200 mr		_	250 mn		Vall	300 mr	n (12") \	Vall	150 mr	m (6") V	/all		n (8") W			n (10") V	Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)
2.44 (8.0)	1.83	(6.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)
	2.13	(7.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)
	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
	1.22	(4.0)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	1.22	(4.0)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	10 M @	800	(32)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)
	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
	2.44	(8.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	3.05	(10.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	1.22	(4.0)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)	10 M @	900	(36)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	900	(36)	15 M @	400	(16)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)
	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)
3.35	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
(11.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)
	3.05	(10.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
N/L	3.35	(11.0)			Δ	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	Δ (5	5	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
V /	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)
	1.53	(5.0)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)
	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	800	(32)
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
3.66 (12.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	3.05	(10.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.35	(11.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.66	(12.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)							15 M @	200	(8)	15 M @	200	(8)
Horizontal	Block H 12" ar	nd 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block of		10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

Table B.1.2.– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Wall Height	Bac	kfill												<u>``</u>	ize and	<u> </u>										
m	Hei	ght				c	260 k	a/m'	3 (60 p	ocf)		Backfil	l Equ	ivale	ent Fluid I	d Der	nsity		200 1	a/m	I3 (75 I	ncf)				
(ft)	m	(ft)	150 mr	m (6") W	Vall		m (8") V		250 mr		Vall	300 mr	n (12") \	Vall	150 mr	m (6") V	/all		n (8") N		250 mr		Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)	15 M @	600	(24)	10 M @	400	(16)	10 M @	800	(32)	10 M @	800	(32)
	1.53	(5.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	10 M @	400	(16)	10 M @	800	(32)
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	800	(32)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	10 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
(9.0)	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
-	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
-	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	200	(8)	15 M @	800	(32)	10 M @	800	(32)
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
3.05	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
(10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	, v			15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	600	(24)	10 M @	800	(32)	15 M @	600	(24)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	600	(24)
-	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
3.35 (11.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
к л л	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)			\sim	15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
V	3.35 1.22	(11.0)	15 M @	600		15 M @	200	(8)	15 M @ 10 M @	200 600	(8)	15 M @	200 800	(8)	15 M @	400	(10)	15 M @	C00	(24)	15 M @	200	(8)	15 M @	200	(8) (32)
	1.53	(4.0)	15 M @	400	(24)	15 M @	600 400	(24)	15 M @	800	(24)	10 M @	600	(32)	15 M @	400	(16) (16)	15 M @	600 400	(24)	15 M @	800 800	(32)	10 M @	800 800	(32)
	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	15 M @	200	(10)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
3.66	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)			/	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
(12.0)	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)		1		15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)		L					15 M @	200	(8)	15 M @	200	(8)
	3.35	(11.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	3.66	(12.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(8)
Horizontal	Block H 12" ar		10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block I of 1		10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

Table B.1.2. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) \leq 0.25 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05kPa, for ICF Walls with 8"Tie Spacing

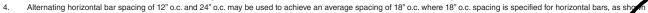
NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Wall Height	Bac	ckfill												<u>``</u>	ize and ent Fluid	<u> </u>										
m (ft)	Hei m	ight				2	180 k	g/m	3 (30 p	ocf)		Dackiii	⊑qu	Ivale		u Dei	isity		720 k	g/m	3 (45 p	ocf)				
(11)	111	(11)	150 m	m (6") V	Vall	200 m	m (8") V	Vall	250 mm	n (10") V	Vall	300 mr	n (12") V	Vall	150 mr	m (6") V	Vall	200 mr	m (8") W	/all	250 mr	n (10") \	Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	10 M @	450	(18)	10 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.44 (8.0)	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
2.74	1.83	(6.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)	15 M @	150	(6)				15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
NAZ	3.35	(11.0)		_	Δ	15 M @	150	(6)	15 M @	150	_(6)_	15 M @	300	(12)	Δ		5	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
3.66 (12.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
. /	2.74	(9.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.35	(11.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	(6)
	3.66	(12.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
Horizontal	Block H 12" ar	leight of nd 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)
Reinforcement		Height	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)


Table B.2.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

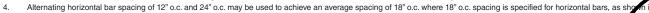
NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

												Vertica	Stee	el (Si	ze and	Spa	cing)								
Wall Height m	Bac Hei							,						<u>``</u>	nt Fluid	<u> </u>										
(ft)	m		150 m	m (6") W	/all	200 mr		_	3 (60 p 250 mn		Nall	300 mr	n (12") \	N/all	150 mr	m (6") V	/all		<u>200 </u> n (8'') W		3 (75) 250 mn		Mall	300 mr	n (12") \	Mall
	1.22	(4.0)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.44 (8.0)	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)
(0.0)	2.13	(7.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
2.74	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(11.0)	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)						_	15 M @	150	(6)	15 M @	300	(12)
$ \setminus \perp$	3.35	(11.0)		E,	\square			Ц	15 M @	150	(6)	15 M @	150	(6)	Δ	5	>				15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15 M @	450	(18)	15 M @	600	(24)	15 M @	600	(24)	10 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)
	1.83	(6.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	600	(24)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)
3.66	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
(12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.35	(11.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.66 Block H	(12.0) leight of							15 M @	150	(6)	15 M @	150	(6)										15 M @	150	(6)
Horizontal Reinforcement	12" ar		15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)
. Ion noroement		16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)


Table B.2.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

Т			I									Vortion	C+o-		70 004	Sno	oina									
Wall Height		ckfill									_			<u>``</u>	ize and ent Fluid	<u> </u>										
m (ft)	Hei m							_	<u>3 (30 p</u>											_	<u>3 (45 p</u>					
(,		(/	150 m	m (6") W	Vall	200 mr	m (8") V	Vall	250 mn	n (10") V	Nall	300 mr	n (12") V	Vall	150 mr	m (6") V	Vall	200 mr	n (8") V	Vall	250 mr	n (10") V	Vall	300 mr	n (12") \	Na
-	1.22	(4.0)	10 M @	400	(16)	10 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(
	2.13	(7.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(
-	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(
2.74	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(
-	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(
-	2.74	(9.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(
-	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(
3.05 (10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(
(10.0)	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	1
-	2.74	(9.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	1
-	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(
-	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	1
3.35	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	t
N//	3.35	(11.0)			Λ	15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)	Λ	C	\subset	\bigcap	$\boldsymbol{\mathcal{T}}$		15 M @	200	(8)	15 M @	200	
	1.22	(4.0)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	6
-	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	1
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(
-	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	1
3.66	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	1
(12.0)	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	
-	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)						. ,	15 M @	200	(8)	15 M @	200	t
-	3.35	(11.0)						/	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	┢
-	3.66	(12.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	╎
	Block H	leight of	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(
Horizontal Reinforcement	Block	nd 18" Height	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(;
	of	16"		000	(32)		000	(32)		000	(32)		000	(32)		000	(32)		000	(02)		000	(52)		000	1

Table B.2.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown

												Vertica	Stee	el (S	ize and	Spa	cing))								
Wall Height m	Bac Hei								. (00	- 6		Backfil	l Equ	ivale	ent Flui	d Dei	nsity		0001		0 (75					
(ft)	m		150 m	 m (6") W	/all		<u>960 к</u> т (8") М	_	<u>3 (60 p</u> 250 mn		Vall	300 mr	n (12") \	Vall	150 m	m (6") V	Vall	ï	200 F n (8") M		1 <u>3 (75</u> 250 mr		Nall	300 mr	n (12") \	Nall
	1.22	(4.0)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
2.44 (8.0)	1.83	(6.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
(0.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
	2.44	(8.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
3.05 (10.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	, v			15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	3.05	(10.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)
3.35 (11.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)
<u>к л л</u>	3.05	(10.0)		_			-		15 M @	200	(8)	15 M @	200	(8)		~					15 M @	200	(8)	15 M @	200	(8)
\mathbb{N}	3.35	(11.0)		E,	\square			Ц	15 M @	200	(8)	15 M @	200	(8)	Δ	5	Ь						\square	15 M @	200	(8)
	1.22	(4.0)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15 M @	400	(16)	15 M @	600	(24)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)
	1.83 2.13	(6.0)	15 M @	200	(8)	15 M @	400 200	(16)	15 M @	400	(16)	15 M @	600 400	(24)	15 M @	200	(8)	15 M @	400 200	(16)	15 M @	400	(16)	15 M @	600 400	(24)
3.66	2.13	(8.0)				15 M @	200	(8)	15 M @	200	(10)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(10)	15 M @	400	(16)
(12.0)	2.44	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(10)				10141 @	200	(3)	15 M @	200	(8)	15 M @	200	(10)
	3.05	(10.0)						(3)	15 M @	200	(8)	15 M @	200	(8)									(3)	15 M @	200	(8)
	3.35	(11.0)									(-)	15 M @	200	(8)										15 M @	200	(8)
	3.66	(12.0)										15 M @	200	(8)												
Horizontal	Block H 12" ar	leight of	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement		Height	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)
	U	iU U							L																	

Table B.2.2. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25 < Sa(0.2) \le 0.70$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8" Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown

Wall Height	Bac	lzfi!!													ize and											
m ĭ	Hei	ght					180 k	a/m'	3 (30 p	ocf)		Backfil	l Equ	ivale	ent Flui	d Der	nsity		720 k	a/m'	3 (45 p	ocf)				
(ft)	m	(ft)	150 m	m (6") W	Vall		m (8") W	_	250 m		Vall	300 mr	m (12") \	Vall	150 m	m (6") V	/all		n (8") V			n (10") V	Nall	300 mr	n (12") \	Nall
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(1
·	1.53	(5.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(1
2.44 (8.0)	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(1
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(1
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(1
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(1
	1.53	(5.0)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(
2.74	1.83	(6.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(*
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(
	2.74	(9.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(
0.05	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(
-	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	, v			15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(
	3.05	(10.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(
ſ	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(1
3.35 (11.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(*
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(*
к л л	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(
V	3.35	(11.0)		E,	\square		_	H	15 M @	150	(6)	15 M @	150	(6)	Δ	5	\triangleright				15 M @	150	(6)	15 M @	150	
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(
·	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(
ľ	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(1
3.66	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(
(12.0)	2.44 2.74	(8.0)				15 M @	150 150	(6)	15 M @	150 150	(6)	15 M @	300 150	(12)				15 M @	150	(6)	15 M @	150 150	(6)	15 M @	300	(
	3.05	(9.0)				10111	100	(6)	15 M @	150	(6)	15 M @	150	(6) (6)							15 M @ 15 M @	150	(6)	15 M @	150 150	(
	3.05	(10.0)							15 M @	150	(6) (6)	15 M @	150	(6)							1011/1	130	(6)	15 M @	150	
	3.66	(11.0)							101111	130	(0)	15 M @	150	(6)										15 M @	150	
	Block H	leight of	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(0)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(1
Horizontal Reinforcement	12" ar Block I	Height	15 M @	300	(12)	15 M @	300	(12)		300	(12)	15 M @	300	(12)	15 M @	300	· ,	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(1
	of	16"			(12)		000	(12)			(12)		000	(12)		000	(12)		000	(14)		000	('-')		000	1

Table B.3.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

Wall Height m (ft)	Bac Hei m 1.22	ght (ft)	150 m																							
(14)	1.22	· /	150 m			<u></u>	<u>960 k</u>	<u>g/m3</u>	3 (60 p	cf)			⊨qu	ivale	ent Fluid			1	200 k	<u>kg/m</u>	<u>3 (75 p</u>	ocf)				
		(10)		m (6") W	/all	200 mr	n (8") W	/all	250 mm	n (10") V	Vall	300 mn	n (12") V	Vall	150 mr	n (6") W	/all	200 mr	n (8") W	/all	250 mn	n (10") V	Vall	300 mn	n (12") \	Na
	1.53	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(
		(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	1
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	1
	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	1
	2.44	(8.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	1
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	1
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	1
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	1
	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	1
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	1
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	1
3.05 (10.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	300	1
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	ſ
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	1
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	1
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(
3.35	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	
N A Z	3.35	(11.0)		_	\wedge		Т			21	_	15 M @	150	(6)	Λ		\subseteq	\bigcap)(15 M @	150	
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	1
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	1
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	1
	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	1
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)							15 M @	150	(6)	15 M @	150	t
(2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	ľ
	3.05	(10.0)										15 M @	150	(6)										15 M @	150	t
	3.35	(11.0)										15 M @	150	(6)										15 M @	150	t
	3.66	(12.0)										15 M @	150	(6)												t
Horizontal	Block H 12" ar	leight of nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	t
Reinforcement	-	Height	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(

Table B.3.1. Continued – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

ľ			r	- 1/50								Vortin	0.4-		70 6 7 -	0	oine									—
Wall Height		ckfill												<u>``</u>	ize and ent Fluid											
m (ft)	Hei m						180 k	g/m	<u>3 (30 p</u>	ocf)		Dackill	- Lqu	ivale			isity		720 k	g/m	<u>3 (45 p</u>	ocf)				
(11)		(10)	150 m	m (6") V	Vall	200 mr	m (8") V	Vall	250 mm	n (10") V	Vall	300 mr	n (12") \	Vall	150 mr	m (6") V	Vall	200 m	n (8") V	/all	250 mr	n (10") V	Nall	300 mr	n (12") \	Na
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	
	1.53	(5.0)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	1
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	
	2.13	(7.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(
	2.44	(8.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	T
(9.0)	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	1
ĺ	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	1
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	ļ
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	1
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	t
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	1
(10.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	t
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	1
	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	1
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(
3.35	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
(11.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	t
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	t
$\Lambda / /$	3.35	(11.0)			Λ	\square				\mathbf{D}		15 M @	200	(8)	Λ		C	\square	1					15 M @	200	
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	1
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	t
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	t
3.66 (12.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
(12.0)	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	
	3.05	(10.0)										15 M @	200	(8)										15 M @	200	╎
	3.35	(11.0)										15 M @	200	(8)												t
	3.66	(12.0)																					-			t
	Block H	leight of	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(
Horizontal Reinforcement	Block	nd 18" Height	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(
	of	16"		500	(12)		500	(12)		500	(12)		300	(12)			(12)		500	(12)			(12)			Ľ

Table B.3.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

						[,] 1/5	•					Vertica	Stor		ze and	Sna	cina					-				—
Wall Height	Bac													<u>`</u>	ent Fluid	<u> </u>										
m (ft)	Hei m		450	(0)))) (_	<u>3 (60 p</u>				-								3 (75				(
	400	(1.0)		m (6") W	<u> </u>	200 mr	. ,		250 mm	<u>, ,</u>		300 mr	<u> </u>			m (6") V		200 mr	()		250 mn	<u> </u>	<u> </u>	300 mr	. ,	Wa T (
-	1.22	(4.0)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	╀
2.44	1.53	(5.0)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	ľ
(8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	╞
	2.13	(7.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
	2.44	(8.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	1
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	
	2.74	(9.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	Ι
ĺ	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	ĺ
	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	t
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)		17		15 M @	200	(8)	15 M @	200	(8)	15 M @	400	t
(10.0)	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	t
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	3.05	(10.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	t
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	ţ,
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	15 M @	600	t
-	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	t
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	t
3.35 (11.0)	2.44	(8.0)						.,	15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)									(-/	15 M @	200	t
	3.05	(10.0)									(-)	15 M @	200	(8)										15 M @	200	t
N/A	3.35	(11.0)			$\boldsymbol{\Lambda}$	\square	-					15 M @	200	(8)	\wedge		C			-			t i			ł
	1.22	(4.0)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	1
	1.53	(4.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(10)	15 M @	400 600	(10)	15 M @	200	(8)	15 M @	400	(0)	15 M @	400	(16)	10 M @	400 200	ľ
	1.55	(6.0)		200	(0)	15 M @	200	(10)	15 M @	400	(0)	15 M @	400	(24)		200	(0)	15 M @	200	(10)	15 M @	400	(16)	15 M @	400	ł
-	2.13	(8.0)				15 M @	200	(8)	15 M @	200	(10)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(10)	15 M @	400	╞
3.66						10 101 11	200	(0)						. ,			-	10 101 10	200	(0)						ł
(12.0)	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	╀
	2.74	(9.0)										15 M @	200	(8)									-	15 M @	200	ļ
	3.05	(10.0)										15 M @	200	(8)												╞
	3.35	(11.0)																					<u> </u>			╞
	3.66 Block H	(12.0) leight of																					<u> </u>			Ļ
Horizontal	Block H 12" ar	nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	1
Reinforcement	Block I	Height 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(

Table B.3.2. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70 < Sa(0.2) \le 1.2$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

Wall Height	Bac	kfill													ize and ent Fluid)								
m (ft)		ight				2	180 k	g/m	3 (30 p	ocf)		Dackiii	i ⊑qu	ivale	ini Fiulo	u Der	isity	7	720 k	g/m:	3 (45 p	ocf)				
(11)	m	(11)	150 m	m (6") V	Vall	200 m	m (8") V	Vall	250 mn	n (10") V	Vall	300 mr	n (12") V	Vall	150 mr	m (6") W	/all	200 mr	n (8") V	/all	250 mr	n (10") V	Vall	300 mr	n (12") \	Nall
	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
-	2.13	(7.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
-	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18
(9.0)	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12
	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
-	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
3.05 (10.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
-	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
-	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
-	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
3.35	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)					_		15 M @	150	(6)	15 M @	150	(6)								_	Ε.	15 M @	150	(6)
N/L	3.35	(11.0)			Δ					2	_	15 M @	150	(6)	Δ '	5	5				$ \Delta$			15 M @	150	(6)
I V I /	1.22	(4.0)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12
3.66 (12.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
ļ	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)										15 M @	150	(6)										15 M @	150	(6)
	3.35	(11.0)										15 M @	150	(6)												
	3.66	(12.0)																								
Horizontal	12" ar	leight of nd 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block of	Height 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

Table B.4.1. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2 < Sa(0.2) \le 1.75$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

												Vertica	Stee	el (Si	ize and	Spa	cing)								
Wall Height m	Bac Hei											Backfil	l Equ	ivale	ent Flui	d Der	nsity		0001		0 (75	f)				
(ft)	m		150 m	 m (6") W	Vall		<u>960 к</u> т (8") V		3 (60 p 250 mn		Vall	300 mr	n (12") V	Vall	150 m	m (6") W	Vall		200 F n (8") M		3 (75 250 mr		Vall	300 mr	n (12") V	Wall
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.44 (8.0)	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
(/	2.13	(7.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.74	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
(9.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
-	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
2.05	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
3.05 (10.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)	V						15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	1.22	(4.0)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
-	1.83	(6.0)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
3.35 (11.0)	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
(11.0)	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15 M @	150	(6)							15 M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)		_	Λ	~	-					15 M @	150	(6)			\sim					-		15 M @	150	(6)
HHH	3.35 1.22	(11.0)		450	(10)	1014 0	000	(10)		300	(10)	15 M @	150 300	(6)	45.44.9	000		1011 0	000	(40)	1011.0	000	(10)	15 M @	150	(6)
-	1.22	(4.0)	15 M @ 15 M @	450 150	(18)	10 M @	300 300	(12)	10 M @ 15 M @	300 450	(12) (18)	10 M @ 15 M @	300 450	(12) (18)	15 M @	300 150	(12) (6)	10 M @	300 300	(12)	10 M @ 15 M @	300 450	(12)	10 M @	300 450	(12)
-	1.83	(6.0)	10111	150	(0)	15 M @	150	(12)	15 M @	300	(12)	15 M @	450	(18)	1011/1 @	150	(0)	15 M @	150	(12)	15 M @	300	(10)	15 M @	300	(12)
	2.13	(0.0)				15 M @	150	(6)	15 M @	150	(12)	15 M @	300	(12)				15 M @	150	(6)	15 M @	150	(12)	15 M @	300	(12)
3.66	2.44	(8.0)						(-)	15 M @	150	(6)	15 M @	150	(6)			-				15 M @	150	(6)	15 M @	150	(6)
(12.0)	2.74	(9.0)										15 M @	150	(6)									/	15 M @	150	(6)
-	3.05	(10.0)										15 M @	150	(6)		<u> </u>										\vdash
ŀ	3.35	(11.0)																								\vdash
ŀ	3.66	(12.0)																								\square
Horizontal	Block H 12" ar		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement		Height	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

Table B.4.1. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2 < Sa(0.2) \le 1.75$ and Hourly Wind Pressure, $q_{_{1/50}} \le 1.05$ kPa, for ICF Walls with 6"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

,				•1/50																						
Wall Height	Bac	kfill												<u>`</u>	ize and	<u> </u>										
m	Hei	ght				2	480 k	a/m:	3 (30 p	ocf)		Backfil	I Equ	ivale	ent Fluid I	d Der	nsity		720 k	a/m:	3 (45 p	ocf)				
(ft)	m	(π)	150 mr	m (6") V	Vall		m (8") W		250 mm		Vall	300 mr	n (12") V	Vall	150 mr	m (6") V	/all		m (8") V		250 mr		Nall	300 mr	n (12") \	Wal
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(1
-	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(
	2.13	(7.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(*
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(2
2.74	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(*
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(2
	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	1
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)										15 M @	200	(
	3.05	(10.0)										15 M @	200	(8)										15 M @	200	(
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(*
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(
	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(*
3.35	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(
(11.0)	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(
	2.74	(9.0)										15 M @	200	(8)										15 M @	200	(
	3.05	(10.0)						1				15 M @	200	(8)												
NAZ	3.35	(11.0)			\square					R		R	S		Δ	1	5	($ \Delta$					
	1.22	(4.0)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(*
-	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.13	(7.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(
3.66 (12.0)	2.44	(8.0)										15 M @	200	(8)										15 M @	200	1
	2.74	(9.0)										15 M @	200	(8)												
	3.05	(10.0)																								Γ
	3.35	(11.0)																								Γ
	3.66	(12.0)																								
Horizontal	Block H 12" ar		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(1
Reinforcement	Block	Height 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(1

Table B.4.2. – Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2 < Sa(0.2) \le 1.75$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

Wall Height	Bac													<u>`</u>	ize and ent Fluid	<u> </u>										
m (ft)	Hei m						960 k	g/m	<u>3 (60 p</u>	ocf)		Dackiii	- Equ				isity		200 k	kg/m	3 (75)	pcf)				
(,		()	150 m	m (6") W	Vall	200 mr	m (8") V	Vall	250 mn	n (10") V	Vall	300 mr	n (12") V	Vall	150 mr	m (6") V	Vall	200 mr	m (8") W	Vall	250 mn	n (10") V	Vall	300 mr	n (12") \	Na
	1.22	(4.0)	15 M @	400	(16)	15 M @	600	(24)	10 M @	400	(16)	10 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(
0.44	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(
2.44 (8.0)	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.44	(8.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	1
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	15 M @	600	(24)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	
2.74	1.83	(6.0)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(
(9.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	
	2.74	(9.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	T
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	t
ĺ	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	Ī
3.05 (10.0)	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	(8)				15 M @	200	(8)	15 M @	200	(8)	15 M @	200	t
(10.0)	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	t
	2.74	(9.0)										15 M @	200	(8)							·			15 M @	200	t
	3.05	(10.0)										15 M @	200	(8)												t
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	(
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	t
	1.83	(6.0)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15 M @	200	(8)	15 M @	200	(8)	15 M @	400	(
0.05	2.13	(7.0)							15 M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	T
3.35 (11.0)	2.44	(8.0)										15 M @	200	(8)										15 M @	200	t
	2.74	(9.0)										15 M @	200	(8)												t
	3.05	(10.0)																								t
$\Lambda / /$	3.35	(11.0)			Λ	\square				D		D	C				C							\square		t
	1.22	(4.0)	10 M @	200	(8)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	200	(8)	15 M @	600	(24)	10 M @	400	1
	1.53	(4.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	(10)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10 M @	200	ľ
	1.83	(6.0)			(3)	15 M @	200	(10)	15 M @	200	(8)	15 M @	400	(16)			(3)	15 M @	200	(10)	15 M @	200	(10)	15 M @	400	1
	2.13	(7.0)						,	15 M @	200	(8)	15 M @	200	(8)						(-)	15 M @	200	(8)	15 M @	200	ľ
3.66	2.44	(8.0)						-			(3)	15 M @	200	(8)			-						(3)	15 M @	200	╀
(12.0)	2.44	(9.0)										10101@	200	(3)										10101 @	200	╞
		. ,						-									-									┞
	3.05	(10.0)															-									╀
	3.35	(11.0)																								╀
	3.66 Block H	(12.0) leight of	45.11.0	000	(40)	45.11.0	0000	(40)	45.14.0	0000	(4.0)	45.0.0	0000	(4.0)	45.11.0	0000	(40)	45.1.0	0000	(4.0)	45.1.0	0000	(40)	45.0.0	0000	╞
Horizontal Reinforcement	12" ar Block I	nd 18"	15 M @	300	(12)	15 M @	300	(12)		300	(12)	15 M @	300	(12)	15 M @	300	È, í	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(
	of		15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(

Table B.4.2. Continued– Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2 < Sa(0.2) \le 1.75$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, for ICF Walls with 8"Tie Spacing

NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.

2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of 480 kg/m3.

This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

4. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in De

Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF \leq 0.2 and Hourly Wind Pressure, $q_{_{1/50}} \leq$ 1.05 for ICF Walls with 6"Tie Spacing

Wall	Height				Distributed	Vertical	Reinfor	cement (Siz	ze and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 m	m (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") V	Vall
Hourly Wind Pressu	re q _{1/50} ≤ 0.5 kPa						•						
2.44	(8)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.05	(10)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.66	(12)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	450	(18)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	10 M @	900	(36)
Hourly Wind Pressu	re q _{1/50} ≤ 0.75 kPa												
2.44	(8)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	10 M @	1200	(48)
3.05	(10)	15 M @	600	(24)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
3.66	(12)	15 M @	300	(12)	15 M @	750	(30)	15 M @	900	(36)	10 M @	1200	(48)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	10 M @	900	(36)
4.88	(16)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	900	(36)
Hourly Wind Pressu	re q _{1/50} ≤ 1.05 kPa												
2.44	(8)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
2.75	(9)	15 M @	600	(24)	15 M @	900	(36)	15 M @	1200	(48)	10 M @	1200	(48)
3.05	(10)	15 M @	450	(18)	15 M @	750	(30)	15 M @	900	(36)	10 M @	900	(36)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	750	(30)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	900	(36)
4.88	(16)				15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)
Horizontal	Block Height of 12" and 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block Height of 16"	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

NOTES /

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

3. This table is to be used in conjunction with the "Design Limitations."

4. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").

Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for Walls with 8"Tie Spacing

Wall	Height				Distributed	Vertical	Reinfor	cement (Siz	e and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 m	m (8") W	/all	250 mr	n (10") V	Vall	300 mr	m (12") V	Vall
Hourly Wind Pressure	e q _{1/50} ≤ 0.5 kPa												
2.44	(8)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
3.05	(10)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1000	(40)	10 M @	1200	(48)
4.88	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1000	(40)
Hourly Wind Pressure	e q _{1/50} ≤ 0.75 kPa		V		Y				Y				
2.44	(8)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)	10 M @	1200	(48)
2.75	(9)	15 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	1200	(48)
3.05	(10)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)
Hourly Wind Pressure	e q _{1/50} ≤ 1.05 kPa												
2.44	(8)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
2.75	(9)	15 M @	600	(24)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
3.05	(10)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	10 M @	800	(32)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)
Horizontal	Block Height of 12" and 18"	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)	10 M @	900	(36)
Reinforcement	Block Height of 16"	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

3. This table is to be used in conjunction with the "Design Limitations."

4. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").

5. Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars, as shown in Detail A.5.

Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for ICF Walls with 6"Tie Spacing

Wall I	Height				Distributed '	Vertical	Reinfor	cement (Siz	e and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 mi	m (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") V	Vall
Seismic zone classifi	cation, S _{a,ICF} ≤ 0.4												
2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.05	(10)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	450	(18)
Horizontal	Block Height of 12" and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Seismic zone classifi	cation, $S_{a,ICF} \leq 0.7$,										
2.44	(8)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Seismic zone classifi	cation, S _{a,ICF} ≤ 1.05							<u> </u>			1		
2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

NOTES

1. S_{a,ICF} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

This table is to be used in conjunction with the "Design Limitations."

3. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").

4. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

5. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown in Detail A.3.

6. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.4.

Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a,ICF} \ge 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ for ICF Walls with 8"Tie Spacing

Wall H	Height				Distributed	Vertical	Reinfor	cement (Siz	e and S	pacing)		
m	(ft)	150 m	m (6") W	/all	200 m	m (8") W	/all	250 mr	n (10") V	Vall	300 mr	n (12") V	Vall
Seismic zone classific	cation, S _{a,ICF} ≤ 0.4							~					
2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.05	(10)	15 M @	400	(16)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	10 M @	400	(16)
Horizontal	Block Height of 12" and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Seismic zone classific	cation, S _{a,ICF} ≤ 0.7												
2.44	(8)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
2.75	(9)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.05	(10)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Seismic zone classific	cation, S _{a,ICF} ≤ 1.05		1		1			I			1	1	
2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Horizontal	Block Height of 12" and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations."

3. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0m (10'-0").

4. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

5. Alternating horizontal bars spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars, as shown in Detail A.3.

6. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.4.

7. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

8. Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12" o.c. where 12" o.c. spacing is specified for vertical bars, as shown in Detail A.6.

Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building Without Walkout Basement)

Wall He	ight			Number of	f Concentr		al 10M Re smic Zone			d of Each \$	Shear Wal		
m	(ft)		S _{a.ICF} ≤	0.085			S _{a,ICF} ≤				S	≤ 0.2	
Second Floor Wa	.,	bry ICF Str			ood Frame	e Roof	a,ICF			1	a,ICF		
		Number a											
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	3	3	3	2	3	3	3	2	3	3	3
3.05	(10)	2	3	4	4	2	4	4	4	2	3	3	4
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	2	2	2	2	2	3	2	2	2	2
2.75	(9)	2	2	3	3	2	2	3	3	2	2	2	3
3.05	(10)	2	3	3	3	2	3	3	4	2	2	3	3
3.66	(12)	2	3	4		2	4	4	4	2	3	4	4
4.27	(14)	3	4			3	5	5	6	3	4	5	5
4.88	(16)	3	5			3	5	6		3	4	5	6
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-6"	2 x 7'-0"	3 x 5'-0"	4 x 4'-0"	1 x 17'-0"	2 x 10'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	2	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	2	3	3	2	3	4	4	2	2	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	3	3	4	5	3	4	5	5	2	3	4	5
4.27	(14)	3	4	5	6	3	5	6	6	2	4	5	6
4.88	(16)	3	4	5		3	5	6	6	2	4	5	6
Main Floor Walls	of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and l	Roof						
		Number a	nd length	of shear w	alls provid								
		1 x 12'-0"	2 x 6'-8"	3 x 4'-4"	4 x 3'-4"	1 x 16'-0"	2 x 9'-0"	3 x 6'-4"	4 x 4'-6"	1 x 21'-0"	2 x 12'-4"	3 x 8'-6"	4 x 6'-6"
2.44	(8)	2	3	4	4	2	3	4	5	2	2	3	4
2.75	(9)	2	3	4	5	2	4	4	5	2	3	4	4
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	4
3.66	(12)	3	4	5	6	2	4	5	6	2	3	<u>4</u>	5
4.27	(14)	3	5	6		3	5	6		2	4	5	6
4.88	(16)	3	5			3	5	6		2	4	5	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	A @	450	(18)	10 N	A @	450	(18)	10 N	9 N	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	A @	400	(16)	10 N	M @	400	(16)	10 N	9 N	400	(16)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.6 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.

8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.4 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.5kPa < q_{1/50} \le 0.75kPa$ (in a Building Without Walkout Basement)

Wall He	eight			Number of	f Concentr			inforcing E Classifica	-	d of Each \$	Shear Wal	l	
m	(ft)		S _{a.ICF} ≤	0.085				0.145			S. Ior	≤ 0.2	
Second Floor Wa	alls of Two Sto	bry ICF Str			ood Frame	e Roof	a,ICF			1	a,ICF		
		-	nd length										
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-0"	3 x 3'-6"	4 x 2'-8"	1 x 11'-0"	2 x 6'-8"	3 x 4'-8"	4 x 3'-6"
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	2	3	3
3.05	(10)	2	3	4	4	2	4	4	5	3	3	4	4
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof			·				
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2x5'-0"	3 x 3'-6"	4 x 2'-8"	1 x 11'-0"	2x6'-8"	3 x 4'-8"	4 x 3'-6"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	2	3	3	2	2	3	4	2	2	2	3
3.05	(10)	2	3	3	4	2	3	4	5	2	3	3	4
3.66	(12)	2	4	4		2	4	4	5	3	3	4	5
4.27	(14)	2	4			2	4	5	5	3	4	5	6
4.88	(16)	2	4			3	5	6		3	4	5	6
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	Wood Fra	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-0"	2 x 6'-8"	3 x 5'-0"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	3	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	3	3	4	2	4	4	4	2	3	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	2	3	4	5	3	5	5	6	2	4	4	6
4.27	(14)	2	4	4	5	3	5	5	6	2	4	4	6
4.88	(16)	2	4	4		3	5	6	6	2	4	4	6
Main Floor Walls	of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and l	Roof						
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 6'-0"	3 x 4'-4"	4 x 3'-4"	1 x 15'-0"	2 x 9'-0"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"	2 x 11'-0"	3 x 8'-0"	4 x 6'-4"
2.44	(8)	2	4 _	4	4	3	3	4	5	2	3	4	4
2.75	(9)	2	4	4	5	3	3	4	6	2	3	4	4
3.05	(10)	2	4	5	5	3	4	5	6	2	3	4	5
3.66	(12)	3	5	6	6	3	5	6		2	4\/	Λ5	6
4.27	(14)	3	5	6	6	3	5	6		2	5	6	6
4.88	(16)	3	5	6		3	5	6		2	5	6	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	A @	450	(18)	10 N	A @	450	(18)	10 N	A @	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	Л @	400	(16)	10 N	M @	400	(16)	10 N	A @	400	(16)

NOTES

1. S_{a,ICF} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.6 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.

8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.5 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.75kPa < q_{1/50} \le 1.05kPa$ (in a Building Without Walkout Basement)

Wall He	ight			Number of	f Concentr			einforcing E Classifica		d of Each \$	Shear Wal	l	
m	(ft)		S _{a.ICF} ≤	0.085				0.145			S	≤ 0.2	
Second Floor Wa	alls of Two Sto	ory ICF Str			ood Frame	e Roof	u,ioi				ditor	-	
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	3	4	4	2	3	3	4	2	3	3	4
2.75	(9)	2	3	4	4	2	3	4	4	3	3	4	5
3.05	(10)	2	4	4	5	2	3	4	5	3	3	4	5
Main Floor Walls	of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-4"	3 x 3'-6"	4 x 2'-8"	1 x 12'-0"	2 x 7'-0"	3 x 5'-0"	4 x 3'-8"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	3	3	4
3.05	(10)	2	3	3	4	2	3	4	4	2	3	4	4
3.66	(12)	2	3	4		2	3	4	5	2	3	4	5
4.27	(14)	2	3			2	4	5	5	2	4	4	6
4.88	(16)	2	4			2	4	5		2	4	5	
Main Floor Walls	of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof					
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 12'-6"	2 x 7'-0"	3 x 5'-0"	4 x 4'-0"	1 x 17'-0"	2 x 10'-0"	3 x 6'-8"	4 x 5'-0"
2.44	(8)	2	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	2	3	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	2	3	4	5	2	4	5	6	2	3	4	5
4.27	(14)	2	4	5		2	4	5	6	2	3	5	6
4.88	(16)	2	4	5		2	4	6		2	3	5	6
Main Floor Walls	of Two Story	ICF Struct	ure Suppo	rting Wood	d Frame F	loors and l	Roof						
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 6'-8"	3 x 4'-4"	4 x 3'-4"	1 x 16'-0"	2 x 9'-0"	3 x 6'-4"	4 x 4'-6"	1 x 21'-0"	2 x 12'-4"	3 x 8'-6"	4 x 6'-6"
2.44	(8)	2	4	5	5	2	4	5	6	2	4	4	4
2.75	(9)	2	4	5	_5	2	5	5	6	2	4	5	5
3.05	(10)	2	4	5	6	2	5	5	6	2	4	5	5
3.66	(12)	2	5	6		2	5	6		2	_ 4	5	5
4.27	(14)	2	5	6		2	5	6		2	_4 V I	5	6
4.88	(16)	2	6			2	5	6		2	4	5	6
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta		
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	able A.1.2.	
Horizontal	6" ICF Tie Spacing	10 N	M @	450	(18)	10 N	M @	450	(18)	10 N	A @	450	(18)
Reinforcement	8" ICF Tie Spacing	10 N	M @	400	(16)	10 N	A @	400	(16)	10 N	M @	400	(16)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.6 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.

8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.6 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa (in a Building Without Walkout Basement)

Wall	Height						-	Soism	ic Zone	Classif	ication						
m	(ft)		Salice				Salice	≤ 0.4				≤ 0.7			Salice	≤ 1.05	
Second Floor	Walls of Two Sto							of									
		Numbe	r and le	ngth of	shear w	alls pro	vided	1	1		1	1					
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 13'-0"	2 x 7'-6"	3 x 5'-6"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 7'-0"	4 x 5'-0"	1 x 18'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	3	3	4	2	2	3	4
2.75	(9)	2	3	3	4	2	3	4	4	2	3	3	5	2	2	4	4
3.05	(10)	2	4	3	4	3	4	4		2	4	4		3	3	4	6
Main Floor Wa	Ills of One Story	ICF Str	ucture S	Supporti	ing Woo	d Fram	e Roof					•					
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 14'-0"	2 x 8'-0"	3 x 6'-0"	4 x 4'-0"	1 x 17'-0"	2 x 11'-0"	3 x 7'-0"	4 x 5'-0"	1 x 20'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	3	4	2	4	4		2	3	4	5	3	3	4	6
3.66	(12)	2	4	4	5	2	4	4		2	4	5		3	3	6	6
4.27	(14)	2	6	5		2	5			4	5			5			
4.88	(16)	2	6			2	5			4	6			6			
Main Floor Wa	Ills of Two Story	Structu	re Supp	orting 2	nd Stor	y Wood	Framed	Walls,	Floor ar	nd Roof			1	-			
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 14'-0"	2 x 8'-0"	3 x 6'-0"	4 x 4'-0"	1 x 16'-0"	2 x 11'-0"	3 x 8'-0"	4 x 6'-0"	1 x 24'-0"	2 x 14'-0"	3 x 10'-0"	4 x 8'-0"	1 x 28'-0"	2 x 16'-0"	3 x 12'-0"	4 x 9'-0"
2.44	(8)	2	2	2	4	2	2	4	4	2	2	3	4	2	2	4	5
2.75	(9)	2	2	3	4	3	3	5	5	2	2	4	5	2	3	4	6
3.05	(10)	2	3	3		3	3	5	5	2	3	4	5	2	4	5	
3.66	(12)	2	3	4		4	4	5		2	4	6		2	6		
4.27	(14)	2	4			6	5			2				4			
4.88	(16)	2	4			6	5			2				4			
Main Floor Wa	Ills of Two Story	ICF Stru	ucture S	Supporti	na Woo	l d Frame	Eloors	and Ro	of		<u> </u>	<u> </u>		1			
		Numbe			-				-								
		1 x 16'-0"	2 x 10'-0"	3 x 7'-0"	4 x 6'-0"	1 x 22'-0"	2 x 14'-0"	3 x 11'-0"	4 x 8'-0"	1 x 28'-0"	2 x 16'-0"	3 x 12'-0"	4 x 9'-4"	1 x 34'-0"	2 x 20'-0"	3 x 15'-0"	4 x 12'-0"
2.44	(8)	2	3	3	3	2	3	3	4	2	2	4	5	2	2	4	5
2.75	(9)	2	3	4	3	2	3	3	5	2	3	4	6	2	3	5	6
3.05	(10)	2	3	4	4	2	4	4	6	2	4	5		2	4	6	
3.66	(12)	2	3	5	5	2	4	4	6	2	6		\sim	2	6		
4.27	(14)	2	4	6		3	5	5		5			\square	- 5	$\Lambda \Delta$	\bigcirc	RG
4.88	(16)	2	4			3	5	5		5				5			
	6" ICF Tie Spacing	A	s per ta	ble A.2.	1.	A	s per ta	ble A.2.	1.	Д	s per ta	ble A.2.	.1.	A	s per ta	ble A.2.	.1.
Vertical Reinforcement	8" ICF Tie Spacing	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.
	Block Height of 12" and 18"		s per ta			Δ	s per ta	ble A.2.	1.		s per ta			A	s per ta	ble A.2.	.1.
Horizontal Reinforcement	Block Height of 16"	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

6. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.

7. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

8. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

9. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

10. Horizontal reinforcement in shear walls where $S_{a,ICF} > 0.2$ must be anchored using a standard 180° hook around vertical end bars.

11. When using this table for $S_{a,ICF} \le 0.2$, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for $S_{a,ICF} \le 0.4$.

Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 0.5$ kPa (in a Building With Walkout Basement)

Wall I	Height			Number of	Concentr			einforcing E Classifica		d of Each \$	Shear Wal		
m	(ft)		S _{a.ICF} ≤	0.085			S _{a.ICF} ≤				S		
Second Floor V	Valls of Two Sto	ry ICF Str											
								f shear wa			2 3 2 3 2 3 2 3 2 3 2 3 4'-0" $2 \times 8'-0"$ $3 \times 5'-2$ 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 4 4 3 5 6 5 6 5 0'-0" $2 \times 11'-0"$ $3 \times 7'-2$ 2 3 3 3 3 4 4 5 6 5 6 5 4'-0" $2 \times 13'-0"$ $3 \times 9'-2$ 3 3 3 4'-0" $2 \times 13'-0"$ $3 \times 9'-2$ 3 3 4 4 5 6 5 6 5 5 6 5 6 5 6		1
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 11'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-6"	1 x 14'-0"	2 x 8'-0"	3 x 5'-6"	4 x 4'-4"
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	4	2	3	3	4	2	3	3	3
3.05	(10)	2	4	4	5	2	3	4	4	2	3	4	4
Main Floor Wa	ls of One Story	ICF Struc	ture Suppo	orting Woo									
								f shear wa	· ·	·		1	
	1	1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 11'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-6"	1 x 14'-0"	2 x 8'-0"	3 x 5'-6"	4 x 4'-4"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	2
2.75	(9)	2	3	3	3	2	3	3	3	2	2	3	3
3.05	(10)	2	3	4	4	2	3	4	4	2	2	3	3
3.66	(12)	3	4	5		3	4	5	5	2	4	4	4
4.27	(14)	4	6			4	5	6		3	5	6	6
4.88	(16)	4	6			4	6			4	5		
Main Floor Wal	Is of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof					
					Ν	lumber an	d length of	f shear wa	lls provide	d			
		1 x 10'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-4"	1 x 14'-0"	2 x 8'-0"	3 x 6'-4"	4 x 4'-4"	1 x 20'-0"	2 x 11'-0"	3 x 7'-8"	4 x 6'-0"
2.44	(8)	2	2	3	3	2	3	3	4	2	2	3	3
2.75	(9)	3	2	4	4	2	3	3	4	2	3	3	4
3.05	(10)	3	3	4	5	3	4	4	5	2	3	4	5
3.66	(12)	4	3	5	5	4	5	5	6	2	4	5	5
4.27	(14)	5	4	6		4	6	6		2	5	6	6
4.88	(16)	5	4			4	6	6		2	5	6	
Main Floor Wal	Is of Two Story	ICF Struct	ure Suppo	rting Woo	d Frame F	loors and I	Roof		1		1	1	1
	,							f shear wa	lls provide	d			
		1 x 12'-0"	2 x 7'-0"	3 x 4'-8"	4 x 3'-8"						2 x 13'-0"	3 x 9'-6"	4 x 7'-8"
2.44	(8)	3	3	4	4	2	3	4	4	2	3	3	3
2.75	(9)	3	4	5	5	2	5	4	5	2	3	4	4
3.05	(10)	3	4	5	5	2	5 🔨	4	5	2	/3	4	4
3.66	(12)	4	5	6	6	2	5	5	6	2		5	5
4.27	(14)	5	6			3	6	6		2	5	6	6
4.88	(16)	5	6			3	6	6		2			RG
	6" ICF Tie Spacing			ble A.1.1.	<u></u>			able A.1.1.	<u> </u>		As per ta		
Vertical Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	able A.1.2.	
Horizontal	Block Height of 12" and 18"	10 N	Л@	450	(18)	10 N	1@	450	(18)	10 N	M @	450	(18)
Reinforcement	Block Height of 16"	10 N	Л @	400	(16)	10 N	A @	400	(16)	10 N	VI @	400	(16)

NOTES

1. S_{allCE} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.10 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

- 7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.
- 8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
- 9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
- 10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

Table A.8 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, $0.5kPa < q_{1/50} \le 0.75kPa$ (in a Building With Walkout Basement)

Wall	Height			Number of	Concentr			einforcing E Classifica		d of Each \$	Shear Wal		
m	(ft)		S _{a.ICF} ≤	0.085			S _{a.ICF} ≤				S. Ior	≤ 0.2	
	Walls of Two Sto	ry ICF Str			ood Frame	e Roof	a,ICF			1	a,ICF		
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-6"	2 x 5'-8"	3 x 4'-0"	4 x 3'-4"	1 x 13'-6"	2 x 7'-6"	3 x 5'-0"	4 x 4'-0"
2.44	(8)	2	3	3	4	2	3	3	4	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	2	3	4
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5
Main Floor Wa	Ils of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
		Number a	nd length	of shear w	alls provid	ed							
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-6"	2 x 5'-8"	3 x 4'-0"	4 x 3'-0"	1 x 13'-6"	2 x 7'-6"	3 x 5'-0"	4 x 4'-0"
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	4	2	3	3	4	2	2	3	3
3.05	(10)	2	4	4	4	2	3	4	5	2	3	4	4
3.66	(12)	3	5	5		3	5	5	5	2	4	5	5
4.27	(14)	3	5			4	5	6		3	5	6	6
4.88	(16)	3	6			4	6			4	5		
	lls of Two Story	-	-	2nd Story	/ Wood Fra			nd Boof	l		-		
			nd length				<u></u>						
			2 x 7'-0"				2 x 7'-8"	3 x 5'-8"	4 x 4'-4"	1 x 17'-6"	2 x 10'-6"	3 x 7'-4"	4 x 5'-8"
2.44	(8)	2	2	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	2	4	4	2	4	4	4	2	3	3	4
3.05	(10)	3	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	4	3	5	6	3	5	6	6	2	4	5	6
4.27	(14)	4	4	6		3	6	6	-	3	4	5	6
4.88	(16)	4	4			3	6			3	4	6	
	Ils of Two Story			rting Woo	l d Framo F	-	-			0	-	0	
			nd length	-			1001						
		1 x 12'-0"		3 x 4'-8"	· ·	1 x 17'-0"	2 x 9'-6"	3 x 7'-0"	4 x 5'-4"	1 x 22'-0"	2 x 12'-6"	3 x 9'-0"	4 x 7'-4"
2.44	(8)	3	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	3	4	4	5	2	4	4	5	2	3	4	4
3.05	(10)	3	4	5		2	4	5	6	2	3	4	5
3.66	(10)	4	5	6	6	3	5	13.		2	4	5	6
4.27	(14)	- 4	5	- 0	- 0	3	6			2	5		6
4.88	(14)	4	5			3	6			2	5	6	6
4.00			1			0				~			0
Vertical	6" ICF Tie Spacing		As per ta	ble A.1.1.			As per ta	able A.1.1.			As per ta	able A.1.1.	
Reinforcement	8" ICF Tie Spacing		As per ta	ble A.1.2.			As per ta	ble A.1.2.			As per ta	ble A.1.2.	
Horizontal	Block Height of 12" and 18"	10 N	M @	450	(18)	10 N	A @	450	(18)	10 N	A @	450	(18)
Reinforcement	Block Height of 16"	10 N	M @	400	(16)	10 N	A @	400	(16)	10 N	A @	400	(16)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations."

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.10 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.

8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail

Table A.9 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \le 0.2$ and Hourly Wind Pressure, 0.75kPa $< q_{1/50} \le 1.05$ kPa (in a Building With Walkout Basement)

Wall	Height			Number of	f Concentr			einforcing E Classifica		d of Each \$	Shear Wal	1	
m	(ft)		S _{a.ICF} ≤	0.085				≤ 0.145			S	≤ 0.2	
Second Floor	Walls of Two Sto		ucture Sup	porting W			a,ioi				a,ioi		
		Number a	nd length				(,		γ	r	r	
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-6"	3 x 4'-0"	4 x 3'-4"	1 x 12'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-8"
2.44	(8)	2	3	4	4	2	3	3	4	2	3	4	4
2.75	(9)	2	4	4	4	2	4	4	4	2	3	4	5
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5
Main Floor Wa	lls of One Story	ICF Struc	ture Suppo	orting Woo	d Frame F	Roof							
			nd length	(· ·								
		1 x 8'-0"	2 x 4'-0"	3 x 2'-8"	4 x 2'-0"	1 x 10'-0"	2 x 5'-6"	3 x 4'-0"	4 x 3'-0"	1 x 12'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-6"
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	3	4	4
3.05	(10)	2	3	4	4	2	3	4	4	2	3	4	4
3.66	(12)	2	4	5		2	4	4	5	2	4	5	5
4.27	(14)	2	5			2	5	5	6	2	4	6	
4.88	(16)	2	5			2	6	6		2	5		
Main Floor Wa	lls of Two Story	Structure	Supporting	2nd Story	/ Wood Fra	amed Wall	s, Floor ar	nd Roof				-	1
			nd length				·						
		1 x 10'-0"	2 x 7'-0"	3 x 4'-6"	4 x 3'-4"	1 x 13'-0"	2 x 7'-4"	3 x 5'-4"	4 x 4'-0"	1 x 15'-0"	2 x 9'-6"	3 x 6'-8"	4 x 5'-4"
2.44	(8)	2	2	3	4	2	4	4	5	2	3	4	4
2.75	(9)	2	2	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	2	4	4	2	4	5	5	2	3	4	5
3.66	(12)	2	2	4	5	2	4	5	6	2	4	5	5
4.27	(14)	2	2	4		2	5	6		2	4	6	6
4.88	(16)	2	2	5		2	5	6		2	4	6	
	lls of Two Story		ure Suppo	rting Woo	d Frame F	loors and l	-						<u> </u>
			nd length	-									
		1 x 12'-0"		3 x 4'-6"		1 x 16'-0"	2 x 9'-0"	3 x 6'-6"	4 x 4'-6"	1 x 20'-0"	2 x 12'-0"	3 x 8'-4"	4 x 6'-8"
2.44	(8)	2	4	4	5	2	4	5	5	2	3	4	4
2.75	(9)	2	4	5	5	2	4	5	6	2	3	5	5
3.05	(10)	2	4	5	6	2	4	5		2	3	5	5
3.66	(10)	2	5	6	ΓE	2	5	6		2	3	5	6
4.27	(14)	2	5			2	5	6		2	3		
4.88	(16)	2	6			2	5			2	3	6	RG
	6" ICF Tie Spacing		_	ble A.1.1.			_	able A.1.1.	<u> </u>			able A.1.1.	<u> </u>
Vertical Reinforcement	8" ICF Tie Spacing		As per ta					ble A.1.2.			· ·	able A.1.2.	
Horizontal	Block Height of 12" and 18"	10 M	M @	450	(18)	10 M	A @	450	(18)	10 M	Л @	450	(18)
Reinforcement	Block Height of 16"	10 N	M @	400	(16)	10 N	Л @	400	(16)	10 N	л @	400	(16)

NOTES

1. $S_{a,ICF}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations."

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use Table A.10 for buildings that do not meet the required wall length of this table.

6. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

7. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.

8. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail

Table A.10 – Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} > 0.2$ and Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa (in a Building With Walkout Basement)

Wall	Height					-	-	Seism	ic Zone	Classif	ication						
m	(ft)		Salce	≤ 0.2			S	≤ 0.4				≤ 0.7			Salce	≤ 1.05	
Second Floor	Walls of Two Sto	ry ICF			orting W	ood Fra	ime Roc	of			a,ioi				и,юл		
		Numbe	r and le	ngth of	shear w	alls pro	vided									,	
		1 x 10'-0"	2 x 5'-0"	3 x 4'-0"	4 x 3'-0"	1 x 13'-0"	2 x 7'-6"	3 x 5'-6"	4 x 4'-0"	1 x 16'-0"	2 x 9'-0"	3 x 7'-0"	4 x 5'-0"	1 x 18'-0"	2 x 12'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	3	3	3	2	3	4	4	2	3	3	5	2	2	3	4
2.75	(9)	2	4	4	4	3	4	5	5	2	4	5		3	4	4	6
3.05	(10)	2	5	4	5	4	5	6		3	6	6		5	5	6	
Main Floor Wa	alls of One Story	ICF Str	ucture S	Supporti	ing Woo	d Fram	e Roof										
		Numbe	r and le	ngth of	shear w	alls pro	vided										
		1 x 11'-0"	2 x 6'-0"	3 x 4'-0"	4 x 3'-0"	1 x 16'-0"	2 x 9'-0"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"	2 x 12'-0"	3 x 8'-0"	4 x 6'-0"	1 x 24'-0"	2 x 13'-0"	3 x 9'-0"	4 x 7'-0"
2.44	(8)	2	2	3	3	2	2	3	4	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	4	4	2	4	4		2	3	4	5	3	3	5	6
3.66	(12)	2	4	6	6	2	4	6		2	4	6		3	6		
4.27	(14)	3	6			3				4	6			5			
4.88	(16)	4	-			4				6	-						
	alls of Two Story		re Supp	ortina 2	nd Stor	v Wood	Framed	l Walls	l Floor ar	-							
		Numbe		-				i vvano,	i loor ui			-					
		1 x 14'-0"	2 x 8'-6"	3 x 6'-0"	4 x 4'-0"	1 x 20'-0"		3 x 9'-0"	4 x 7'-0"	1 x 26'-0"	2 x 15'-0"	3 x 11'-0"	4 x 9'-0"	1 x 30'-0"	2 x 17'-0"	3 x 13'-0"	4 x 10'-0"
2.44	(8)	2	2	3	5	2	2	4	4	2	2	3	4	2	5	6	6
2.75	(9)	2	3	4	5	2	2	5	5	2	3	4	5	2	6	6	
3.05	(10)	2	3	4		3	2	5	5	2	4	5	6	2	6		
3.66	(12)	2	4	6		4	2	6	-	2	6	-	-	4			
4.27	(14)	4	6	-		6	4			2				5			
4.88	(16)	4	6			6	4			5				-			
	alls of Two Story		-	unnorti	l na Woo	-		and Bo	of								
		Numbe			-												
INIC		1 x 16'-0"	2 x 10'-4"	3 x 7'-6"	4 x 6'-0"	1 x 23'-0"	2 x 15'-0"	3 x 11'-0"	4 x 9'-0"	1 x 32'-0"	2 x 17'-0"	3 x 13'-0"	4 x 10'-0"	1 x 38'-0"	2 x 22'-0"	3 x 17'-0"	4 x 13'-0"
2.44	(8)	2	3	3	4	2	3	4	4	2	3	4	5	2	4	4	5
2.44	(9)	2	3	4	4	2	3	4	5	2	4	5	6	2	5	5	6
3.05	(10)	3	4	5	5	3	4	5	6	2	5	6	5	2	5	6	
3.66	(12)	4	5	6	6	4	5	6	9	2				2	5		
4.27	(12)	5	6	0		6	5	0		5				5	$\Lambda \Delta$		RG
4.27	(14)	5	6			6				6				6			Ň
4.00																	
Vertical	6" ICF Tie Spacing	A	s per ta	ble A.2.	1.	A	s per ta	ble A.2.	1.	A	s per ta	ble A.2.	1.	A	s per ta	able A.2.	1.
Reinforcement	8" ICF Tie Spacing	A	s per ta	ble A.2.	2.	A	ls per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	ls per ta	ble A.2.	2.
Horizontal	Block Height of 12" and 18"	A	s per ta	ble A.2.	1.	A	s per ta	ble A.2.	1.	А	s per ta	ble A.2.	1.	A	s per ta	able A.2.	1.
Reinforcement	Block Height of 16"	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	A	s per ta	ble A.2.	2.	А	s per ta	ble A.2.	2.

NOTES

1. S_{allCE} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

5. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

6. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.

7. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

8. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

9. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

10. Horizontal reinforcement in shear walls where $S_{alCF} > 0.2$ must be anchored using a standard 180° hook around vertical end bars.

11. When using this table for $S_{a,ICF} \le 0.2$, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for $S_{a,ICF} \le 0.4$.

	a,ICF												
Wall	Height					Soi	smic Zono	Classifica	tion				
m	(ft)	S	a.ICF ≤ 0.08	5	S	Sei a.ICF ≤ 0.14			$S_{a \mid CF} \le 0.2$,		$S_{a,ICF} \le 0.4$	
	ement Wall of a S							l	a,ICF = 01				
		Number a			-								
			2 x 6'-0"		1 x 12'-0"		3 x 6'-0"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 19'-0"	2 x 13'-0"	3 x 10'-0
2.44	(8)	2	3	5	2	3	3	2	3	4	2	2	4
2.75	(9)	2	3	6	2	3	4	2	4	4	2	3	5
3.05	(10)	2	3	6	2	3	4	2	5	5	4	4	5
3.66	(12)	2	4		3	4	5	3	6	6	6	6	
Walkout Base	ment Walls of a	Two Story	Wood Frar	ned Struct	ture Suppo	orting Woo	d Frame F	loors and	Roof				
		Number a	nd length	of shear w	alls provid	ed							
		1 x 10'-0"	2 x 6'-6"	3 x 5'-0"	1 x 12'-0"	2 x 8'-0"	3 x 6'-0"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 19'-0"	2 x 13'-0"	3 x 10'-0
2.44	(8)	2	4	4	2	3	4	2	3	4	2	3	4
2.75	(9)	3	4	5	2	4	4	2	4	4	3	4	5
3.05	(10)	4	5	5	2	4	4	2	4	5	4	5	6
3.66	(12)	5	6	6	3	4	5	3	5	6	5	6	6
Walkout Base	ment Wall of a T	wo Story B	uilding wit	h Main Flo	or ICF Wa	alls Suppor	rting 2nd S	Story Wood	Framed V	Valls, Floo	r and Roo	f	
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 7'-0"	3 x 5'-6"	1 x 14'-0"	2 x 9'-0"	3 x 7'-0"	1 x 16'-0"	2 x 11'-0"	3 x 8'-6"	1 x 22'-0"	2 x 15'-0"	3 x 12'-0
2.44	(8)	2	3	3	2	4	4	2	3	4	2	4	4
2.75	(9)	2	3	4	2	4	5	2	3	4	4	4	5
3.05	(10)	2	4	4	2	4	5	2	3	4	4	5	5
3.66	(12)	2	4	5	3	5	6	4	4	6	6	6	6
Walkout Base	ment Wall of Two	Story ICF	Structure	Supportin	ng Wood F	rame Floo	rs and Roo	of					
		Number a	nd length	of shear w	alls provid	ed							
		1 x 12'-0"	2 x 8'-0"	3 x 6'-0"	1 x 16'-0"	2 x 10'-6"	3 x 8'-0"	1 x 20'-0"	2 x 13'-0"	3 x 9'-6"	1 x 26'-0"	2 x 18'-0"	3 x 14'-0
2.44	(8)	2	3	4	2	4	5	2	2	4	2	3	4
2.75	(9)	2	4	5	2	4	5	2	3	5	2	3	5
3.05	(10)	2	4	5	2	4	5	2	3	5	3	□4	6
3.66	(12)	3	5	6	3	5	6	2	4		6	6	6
Vertical	6," 8," 10" Thick Wall	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Reinforcement	12" Thick Wall	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
Horizontal	Block Height of 12" and 18"	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)	10 M @	450	(18)
Reinforcement	Block Height of 16"	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)

Table A.11 – Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a,ICF} \leq 0.4$ and Hourly Wind Pressure, $q_{1/50} \leq 1.05$ kPa

NOTES

1. S_{a ICE} is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

2. This table is to be used in conjunction with the "Design Limitations".

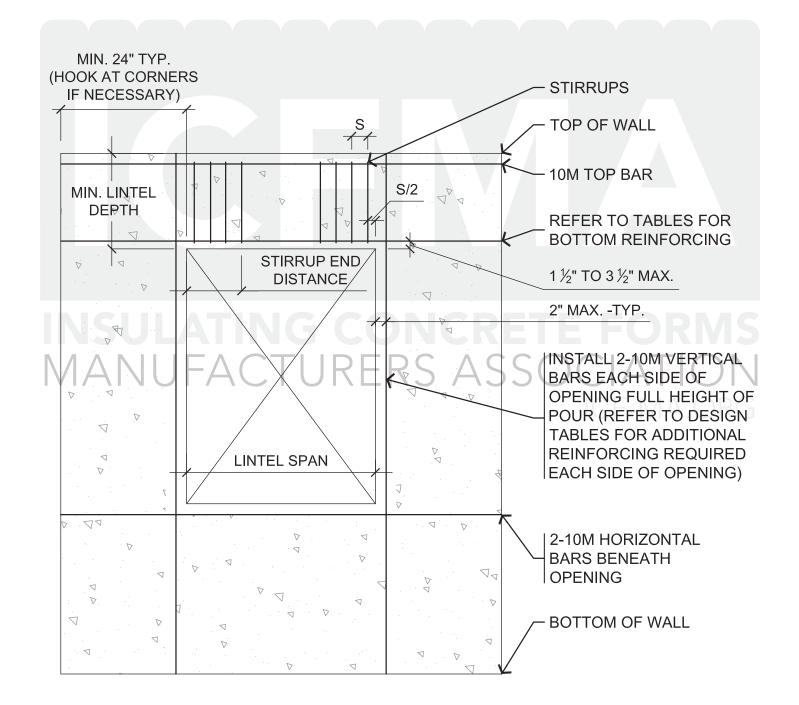
3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300mm (12") walls. Place each layer as shown in the rebar placement drawing.

4. Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement

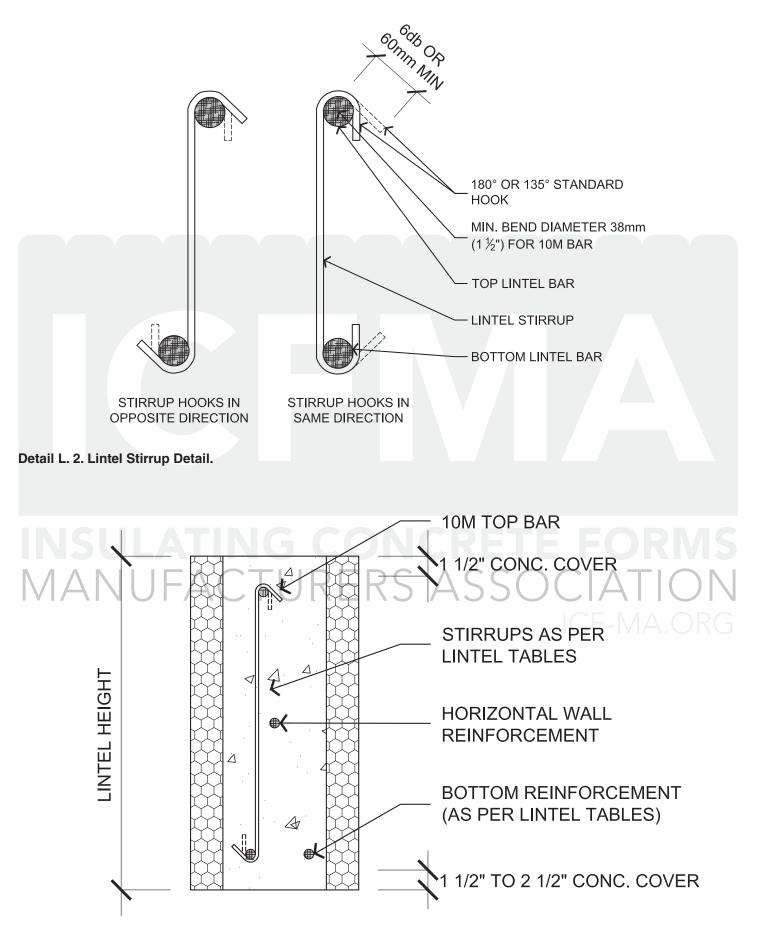
5. Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations," are adequate.

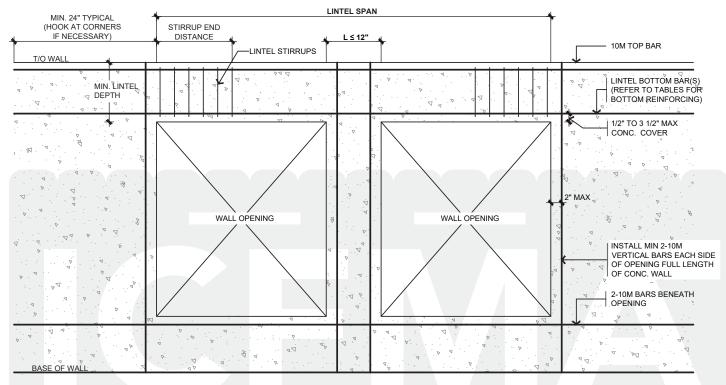
6. All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"

7. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.

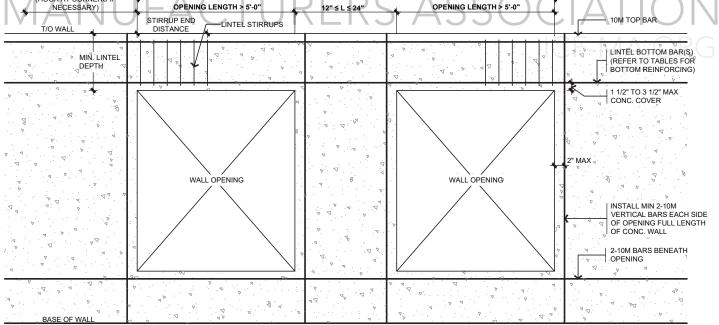

8. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

9. Horizontal reinforcement in shear walls where S_{a.ICF} > 0.2 must be anchored using a standard 180° hook around vertical end bars.


10. Walkout basement shear walls are to be reviewed and designed by a structural engineer where $S_{a,ICF} > 0.4$.


Lintel Details and Tables

Detail L. 1. Reinforcing Around Openings.



Detail L. 3. Lintel Section

Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.

Detail L. 5. Lintel Span with Less Than 610mm (24") of Wall Between Openings, and Openings Are Greater Than 1.53m (5'-0") in Length.

Table L1 6" Lintel Reinforcement with Uniformly Distributed Load

						Lintel -	6" Thic	k x 8" [Deep (1	50mm T	hick x	200mm	Deep),	s = 3"	(75mm)				
Lintel	Spop								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Dlb/ft	1250	Dlb/ft	1500	Dlb/ft	1750	Dlb/ft	200	0lb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	150 (6)	1-15M	150 (6)	1-15M	225 (9)	1-15M	225 (9)	1-15M	300 (12)	1-15M	300 (12)
1200	(4)	1-10M	0	1-15M	0	1-15M	150 (6)	1-15M	225 (9)	1-20M	300 (12)	1-20M	375 (15)						
1500	(5)	1-15M	0	1-15M	150 (6)	1-20M	300 (12)												
1800	(6)	1-15M	0	1-20M	300 (12)														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 1-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 6	"Thick	x 12" C	Deep (1	50mm 1	Thick x	300mm	Deep),	s = 6"	(150mn	ו)			
Lintel	Snan								Unifo	mly Dis	tributed	Load							
Linter	Opan	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5	«N/m	25.5	kN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	300 (12)	1-10M	(12)	1-15M	300 (12)	1-15M	300 (12)								
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-15M	450 (18)	1-15M	450 (18)
1500	(5)	1-10M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	450 (18)	1-15M	450 (18)	1-20M	450 (18)	1-20M	600 (24)	1-20M	600 (24)
1800	(6)	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	450 (18)	1-20M	600 (24)	1-20M	600 (24)	2-15M	600 (24)	2-15M	750 (30)	1-15M + 1-20M	750 (30)
2400	(8)	1-15M	0	1-20M	450 (18)	2-15M	600 (24)	2-15M	750 (30)	1-15M + 1-20M	900 (36)								
3000	(10)	1-20M	450 (18)	2-15M	750 (30)														
3600	(12)	1-15M + 1-20M	750 (30)																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L1 Continued

					L	intel - 6	"Thick	x 16" D	eep (1	50mm 1	Thick x	400mm	Deep),	s = 8"	(200mn	n)			
Lintal	0								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5k	N/m	11kl	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	۸/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	0lb/ft	150	Olb/ft	1750	0lb/ft	200	0lb/ft	250	Olb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	400 (16)	1-10M	400 (16)												
1200	(4)	1-10M	0	1-10M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)								
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	600 (24)	1-15M	600 (24)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	600 (24)	1-15M	600 (24)	1-20M	800 (32)	2-20M	800 (32)
2400	(8)	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-20M	600 (24)	1-20M	800 (32)	2-15M	800 (32)	2-15M	1000 (40)	1-15M + 1-20M	1000 (40)		
3000	(10)	1-15M	0	1-20M	600 (24)	2-15M	800 (32)	2-15M	1000 (40)	1-15M + 1-20M	1000 (40)	2-20M	1200 (48)	1-10M + 2-20M	1200 (48)				
3600	(12)	1-20M	400 (16)	2-15M	800 (32)	1-15M + 1-20M	1000 (40)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1400 (56)								
4200	(14)	2-15M	800 (32)	2-20M	1200 (48)	1-15M + 2-20M	1400 (56)												
4800	(16)	2-20M	1000 (40)	1-15M + 2-20M	1400 (56)														
5400	(18)	1-15M + 2-20M	1400 (56)																
6000	(20)																		

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 6'	"Thick	x 24" D	eep (1	50mm T	hick x (600mm	Deep),	s = 12"	(300m	n)			
Lintol	Span								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	250	Olb/ft	3000	0lb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	300 (12)														
1200	(4)	1-10M	0	1-10M	9	1-10M	600 (24)	1-10M	600 (24)	1-15M	600 (24)								
1500	(5)	1-10M	0	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)	1-15M	600 (24)	1-15M	900 (36)
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)	1-20M	900 (36)	1-20M	900 (36)	2-15M	900 (36)	2-15M	1200 (48)
3000	(10)	1-15M	0	1-15M	0	1-15M	600 (24)	1-20M	600 (24)	1-20M	900 (36)	2-15M	1200 (48)	1-15M + 1-20M	1200 (48)	2-20M	1200 (48)		
3600	(12)	1-15M	0	1-20M	600 (24)	1-20M	900 (36)	2-15M	900 (36)	2-15M	1200 (48)	2-20M	1500 (60)	1-10M + 2-20M	1500 (60)				
4200	(14)	1-20M	600 (24)	1-20M	900 (36)	2-15M	1200 (48)	1-15M + 1-20M	1500 (60)	2-20M	1500 (60)	1-15M + 2-20M	1800 (72)						
4800	(16)	1-20M	600 (24)	2-15M	1200 (48)	1-15M + 1-20M	1500 (60)	1-10M + 2-20M	1800 (72)	1-15M + 2-20M	1800 (72)	1-15M + 3-20M	1950 (78)						
5400	(18)	2-15M	900 (36)	2-20M	1500 (60)	1-10M + 2-20M	1800 (72)	3-20M	2100 (84)	1-15M + 3-20M	2100 (84)								
6000	(20)	1-15M + 1-20M	1200 (48)	1-10M + 2-20M	1800 (72)	3-20M	2100 (84)	1-15M + 3-20M	2400 (96)										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 4.

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L1 Continued

					Li	ntel - 6	"Thick	x 32" D	eep (1	50mm T	hick x 8	300mm	Deep),	s = 18"	(450mr	n)			
Lintel	0								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	(N/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		50	0v	750	lb/ft	1000	0lb/ft	1250	0lb/ft	1500	0lb/ft	2000	0lb/ft	250	0lb/ft	3000	0lb/ft	3500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-10M	450 (18)	1-10M	450 (18)												
1500	(5)	1-10M	0	1-10M	450 (18)	1-15M	450 (18)	1-15M	450 (18)										
1800	(6)	1-10M	0	1-15M	900 (36)	1-15M	900 (36)	1-15M	900 (36)	1-15M	900 (36)								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	900 (36)	1-20M	900 (36)	1-20M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)
3600	(12)	1-15M	0	1-20M	0	1-20M	900 (36)	1-20M	900 (36)	1-20M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)				
4200	(14)	1-20M	0	1-20M	900 (36)	1-20M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)	1-15M + 1-20M	1800 (72)						
4800	(16)	1-20M	0	1-20M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)	1-15M + 1-20M	1800 (72)	1-10M + 2-20M	1800 (72)						
5400	(18)	1-20M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1800 (72)	2-20M	1800 (72)	1-10M + 2-20M	2250 (90)								
6000	(20)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1800 (72)	1-10M + 2-20M	2250 (90)	3-20M	2250 (90)								

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L2 8" Lintel Reinforcement with Uniformly Distributed Load

						Lintel -	8"Thic	k x 8" C)eep (2	00mm 1	Thick x	200mm	Deep)	s = 3"	(75mm))			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5ł	«N/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	2250	0lb/ft	2500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	150 (6)	1-15M	150 (6)	1-15M	225 (9)	1-15M	225 (9)
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	150 (6)	1-15M	150 (6)	1-20M	225 (9)	1-20M	300 (12)				
1500	(5)	1-15M	0	1-15M	0	1-20M	150 (6)	1-20M	225 (9)										
1800	(6)	1-15M	0	1-20M	150 (6)														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 8	"Thick	x 12" D	eep (2	00mm ⁻	Thick x	300mm	Deep),	s = 6"	(150mn	n)			
Lintel	Span								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
			lb/ft	750		_	0lb/ft		0lb/ft		Olb/ft		0lb/ft	2000			0lb/ft		Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-15M	0	1-15M	300 (12)												
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-20M	450 (18)	1-20M	450 (18)
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-20M	300 (12)	1-20M	450 (18)	2-15M	600 (24)	2-15M	600 (24)	2-15M	600 (24)
2400	(8)	1-15M	0	1-20M	0	1-20M	450 (18)	2-15M	600 (24)	1-15M + 1-20M	600 (24)	2-20M	750 (30)	1-10M + 2-20M	900 (36)				
3000	(10)	1-20M	0	2-15M	450 (18)	2-20M	750 (30)	1-10M + 2-20M	900 (36)										
3600	(12)	1-15M + 1-20M	300 (12)	1-10M + 2-20M	750 (30)														
4200	(14)	1-10M + 2-20M	600 (24)																
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 1-15M + 2-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L2 Continued

					L	intel - 8	"Thick	x 16" D	eep (2	00mm 1	Thick x	400mm	Deep)	, s = 8"	(200mn	n)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	κN/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	250	Olb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)										
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	400 (16)	1-15M	400 (16)	1-15M	400 (16)	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-20M	400 (16)	1-20M	600 (24)	2-15M	600 (24)	2-15M	800 (32)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)
3000	(10)	1-15M	0	1-20M	0	2-15M	400 (16)	2-15M	800 (32)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)	1-10M + 2-20M	1000 (40)	1-10M + 3-20M	1200 (48)	1-10M + 3-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	600 (24)	1-15M + 1-20M	800 (32)	2-20M	1000 (40)	1-10M + 2-20M	1200 (48)	3-20M	1200 (48)	1-10M + 3-20M	1400 (56)				
4200	(14)	2-15M	400 (16)	2-20M	800 (32)	1-10M + 2-20M	1200 (48)	3-20M	1400 (56)										
4800	(16)	2-20M	600 (24)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1400 (56)												
5400	(18)	1-10M + 2-20M	1000 (40)	1-10M + 3-20M	1400 (56)														
6000	(20)	3-20M	1200 (48)																

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 8'	"Thick	x 24" D	eep (20	00mm T	hick x	600mm	Deep),	s = 12"	(300m	m)			
Lintol	Span								Unifo	rmly Dis	stributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	150	0lb/ft	2000	Olb/ft	250	0lb/ft	300	0lb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	600 (24)														
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-15M	600 (24)								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	600 (24)	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	600 (24)	1-20M	600 (24)	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	1-20M	600 (24)	1-20M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	1200 (48)	1-15M + 1-20M	1200 (48)	2-20M	1200 (48)
3600	(12)	1-20M	0	1-20M	0	1-20M	600 (24)	2-15M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	1200 (48)	1-10M + 2-20M	1500 (60)				
4200	(14)	1-20M	0	2-15M	600 (24)	2-15M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	1200 (48)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)				
4800	(16)	2-15M	0	2-15M	600 (24)	2-20M	1200 (48)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)						
5400	(18)	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1500 (60)	1-15M + 2-20M	1500 (60)	1-10M + 3-20M	1800 (72)								
6000	(20)	1-15M + 1-20M	600 (24)	1-10M + 2-20M	1200 (48)	3-20M	1800 (72)	1-15M + 3-20M	1800 (72)										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L2 Continued

					Li	ntel - 8'	'Thick	x 32'' D	eep (2	00mm T	hick x	800mm	Deep),	s = 18''	(450m	m)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	Olb/ft	1500	Olb/ft	2000	0lb/ft	250	0lb/ft	300	Olb/ft	350	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	450 (18)												
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	900 (36)	1-15M	900 (36)								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	900 (36)	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	2-15M	1350 (54)	2-15M	1350 (54)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	1350 (54)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)		
4200	(14)	1-20M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	1-10M + 2-20M	1800 (72)				
4800	(16)	2-15M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)						
5400	(18)	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)	3-20M	2250 (90)						
6000	(20)	2-15M	0	1-15M + 1-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1800 (72)	3-20M	1800 (72)								

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Table L3 10" Lintel Reinforcement with Uniformly Distributed Load

			Lintel - 10"Thick x 8" Deep (250mm Thick x 200mm Deep), s = 3" (75mm)																
Lintal	Cnon	Uniformly Distributed Load																	
Lintel Span		7.5kN/m		11kN/m		14.5kN/m		18kN/m		21.5kN/m		25.5kN/m		29kN/m		33kN/m		36.5kN/m	
		500lb/ft		750 lb/ft		1000lb/ft		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		2250lb/ft		2500lb/ft	
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	150 (6)	2-15M	225 (9)	2-15M	225 (9)
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	225 (9)	2-15M	300 (12)				
1500	(5)	1-15M	0	1-15M	0	1-20M	0	1-20M	150 (6)	2-15M	225 (9)								
1800	(6)	1-15M	0	1-20M	0	2-15M	150 (6)												
2400	(8)	2-15M	0																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Lintel Span			Lintel - 10"Thick x 12" Deep (250mm Thick x 300mm Deep), s = 6" (150mm)																
		Uniformly Distributed Load																	
		7.5kN/m		11kN/m		14.5kN/m		18kN/m		21.5kN/m		25.5kN/m		29kN/m		33kN/m		36.5kN/m	
		500lb/ft		750 lb/ft		1000lb/ft		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		2250lb/ft		2500lb/ft	
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	9	1-15M	0	1-15M	300 (12)	1-15M	300 (12)
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	300 (12)	1-20M	300 (12)	1-20M	300 (12)
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	300 (12)	1-20M	300 (12)	2-15M	450 (18)	2-15M	450 (18)	2-15M	450 (18)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	2-15M	300 (12)	1-15M + 1-20M	450 (18)	2-20M	600 (24)	2-20M	750 (30)	1-10M + 2-20M	750 (30)	1-15M + 2-20M	900 (36)
3000	(10)	1-20M	0	2-15M	0	1-15M + 1-20M	450 (18)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	750 (30)								
3600	(12)	1-15M + 1-20M	0	2-20M	450 (18)	1-15M + 2-20M	750 (30)												
4200	(14)	1-10M + 2-20M	300 (12)	3-20M	750 (30)														
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L3 Continued

					Li	ntel - 10)" Thick	x 16" E	Deep (2	250mm	Thick x	400mm	Deep)	, s = 8"	(200mi	m)			
Lintel	0								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	«N/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	250	0lb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	nf. End Reinf. End F el Distance Steel Distance S				Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance										
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	400 (16)
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	400 (16)	1-20M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	400 (16)	1-20M	400 (16)	1-20M	600 (24)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	400 (16)	2-15M	400 (16)	2-15M	600 (24)	1-15M + 1-20M	800 (32)	2-20M	800 (32)
3000	(10)	1-20M	0	1-20M	0	2-15M	400 (16)	2-15M	400 (16)	1-15M + 1-20M	600 (24)	2-20M	800 (32)	1-10M + 2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	0	1-15M + 1-20M	600 (24)	2-20M	800 (32)	1-10M + 2-20M	1000 (40)	3-20M	1000 (40)	1-10M + 3-20M	1200 (48)				
4200	(14)	2-15M	0	2-20M	400 (16)	1-10M + 2-20M	800 (32)	3-20M	1000 (40)	1-10M + 3-20M	1200 (48)								
4800	(16)	2-20M	0	1-10M + 2-20M	800 (32)	1-10M + 3-20M	1200 (48)	4-20M	1400 (56)										
5400	(18)	1-10M + 2-20M	400 (16)	1-10M + 3-20M	1000 (40)														
6000	(20)	3-20M	800 (32)																

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lir	ntel - 10	"Thick	x 24" C	eep (2	50mm 1	Thick x	600mm	Deep),	s = 12'	' (300m	m)			
Lintel	Span			~					Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Dlb/ft	1250	Olb/ft	1500	Olb/ft	2000	Dlb/ft	250	Olb/ft	300	0lb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-10M	9	1-10M	0	1-10M	0	1-15M	0								
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	600 (24)								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	600 (24)	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	600 (24)	2-15M	600 (24)	2-15M	600 (24)	2-15M	900 (36)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	600 (24)	2-15M	600 (24)	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	1200 (48)
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	600 (24)	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1200 (48)	1-15M + 2-20M	1200 (48)		
4200	(14)	2-15M	0	2-15M	0	2-15M	600 (24)	1-15M + 1-20M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	1200 (48)	3-20M	1500 (60)				
4800	(16)	2-15M	0	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1500 (60)						
5400	(18)	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	1-10M + 3-20M	1500 (60)								
6000	(20)	2-20M	0	1-10M + 2-20M	900 (36)	3-20M	1200 (48)	1-15M + 3-20M	1500 (60)										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L3 Continued

					Lir	ntel - 10	"Thick	x 32" C)eep (2	50mm 1	Thick x	800mm	Deep)	s = 18'	' (450m	m)			
Lintel	0								Unifo	rmly Dis	tributed	l Load							
Lintel	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	0lb/ft	2500	0lb/ft	300	Olb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0										
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	900 (36)								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	900 (36)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	2-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1350 (54)
4200	(14)	1-20M	0	2-15M	0	2-15M	0	2-15M	900 (36)	2-15M	900 (36)	1-15M + 1-20M	1350 (54)	1-10M + 2-20M	1350 (54)	1-15M + 2-20M	1800 (72)		
4800	(16)	2-15M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)						
5400	(18)	2-15M	0	2-15M	0	1-15M + 1-20M	900 (36)	2-20M	1350 (54)	1-10M + 2-20M	1350 (54)	3-20M	1800 (72)						
6000	(20)	2-15M	0	1-15M + 1-20M	900 (36)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1350 (54)	3-20M	1800 (72)	1-15M + 3-20M	2250 (90)						

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 12" Lintel Reinforcement with Uniformly Distributed Load

					L	intel -	12" Thio	ck x 8" [Deep (3	300mm	Thick x	200mn	n Deep)), s = 3"	(75mm)			
Lintal	Cnon								Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5	«N/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	2250	Olb/ft	250	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0										
1200	(4)	1-15M	0	1-20M	0	1-20M	150 (6)	2-15M	150 (6)	2-15M	225 (9)								
1500	(5)	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	150 (6)	2-15M	225 (9)	1-15M + 1-20M	225 (9)	2-20M	300 (12)		
1800	(6)	1-15M	0	1-20M	0	2-15M	0	2-15M	150 (6)	2-20M	225 (9)								
2400	(8)	2-15M	0	2-20M	0														
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 12	2" Thick	(x 12" I	Deep (3	800mm	Thick x	300mn	n Deep)), s = 6"	(150mi	m)			
Lintol	Spop								Unifo	mly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5ł	«N/m	25.5	κN/m	29k	N/m	33k	N/m	36.5	kN/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	200	0lb/ft	2250	Olb/ft	2500	Olb/ft
mm	(ft)	Bottom Reinf. Steel	End Reinf. End Reinf Distance Steel Distance Stee				Stirrup End Distance	Bottom Reinf. Steel	Stirrup End Distance										
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	9	1-15M	0	1-15M	0	1-20M	0
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	300 (12)	1-20M	300 (12)
1800	(6)	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	300 (12)	2-15M	300 (12)	2-15M	300 (12)	2-15M	450 (18)
2400	(8)	1-20M	0	1-20M	0	1-20M	0	2-15M	300 (12)	1-15M + 1-20M	300 (12)	1-15M + 1-20M	450 (18)	2-20M	600 (24)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	750 (30)
3000	(10)	1-20M	0	2-15M	0	1-15M + 1-20M	300 (12)	2-20M	450 (18)	1-15M + 2-20M	600 (24)	3-20M	750 (30)	1-10M + 3-20M	900 (36)				
3600	(12)	2-15M	0	2-20M	300 (12)	1-15M + 2-20M	600 (24)	1-10M + 3-20M	750 (30)										
4200	(14)	2-20M	0	3-20M	450 (18)	4-20M	900 (36)												
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 Continued

					Li	ntel - 12	2"Thick	x 16" [Deep (3	300mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	m)			
Lintel	0								Unifo	rmly Dis	tributed	Load							
Lintel	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	۸/m	25.5	κN/m	29k	N/m	36.5	kN/m	43.5	kN/m
		500	lb/ft	750	lb/ft	1000	0lb/ft	1250	0lb/ft	1500	0lb/ft	1750	0lb/ft	2000	0lb/ft	250	0lb/ft	3000	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0	1-15M	0	1-15M	0										
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	400 (16)
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	400 (16)	1-20M	400 (16)
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	0	2-15M	400 (16)	2-15M	400 (16)	1-15M + 1-20M	600 (24)	2-20M	800 (32)
3000	(10)	1-20M	0	1-20M	0	2-15M	0	2-15M	400 (16)	1-15M + 1-20M	400 (16)	2-20M	600 (24)	2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1000 (40)
3600	(12)	1-20M	0	2-15M	0	1-15M + 1-20M	400 (16)	2-20M	600 (24)	1-10M + 2-20M	800 (32)	1-15M + 2-20M	1000 (40)	1-10M + 3-20M	1000 (40)	4-20M	1200 (48)		
4200	(14)	2-15M	0	2-20M	0	1-10M + 2-20M	600 (24)	1-15M + 2-20M	800 (32)	1-10M + 3-20M	1000 (40)	4-20M	1200 (48)						
4800	(16)	2-20M	0	1-10M + 2-20M	400 (16)	1-10M + 3-20M	800 (32)	4-20M	1200 (48)										
5400	(18)	1-10M + 2-20M	0	1-10M + 3-20M	800 (32)														
6000	(20)	3-20M	400 (16)																

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lir	ntel - 12	"Thick	x 24" C	eep (3	00mm 1	Thick x	600mm	Deep)	, s = 12'	' (300m	m)			
Lintel	Span			~					Unifo	rmly Dis	tributed	Load							
Linter	Span	7.5k	N/m	11k	N/m	14.5	κN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	Olb/ft	1500	Olb/ft	2000	Olb/ft	250	Olb/ft	3000	Olb/ft	3500	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-10M	9	1-10M	•	1-10M	0	1-15M	0								
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	600 (24)
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	600 (24)	2-15M	600 (24)	2-15M	600 (24)
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	2-15M	600 (24)	1-15M + 1-20M	600 (24)	1-15M + 1-20M	900 (36)	2-20M	900 (36)
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	0	2-15M	600 (24)	2-20M	900 (36)	1-10M + 2-20M	900 (36)	1-15M + 2-20M	1200 (48)	3-20M	1200 (48)
4200	(14)	2-15M	0	2-15M	0	2-15M	0	1-15M + 1-20M	600 (24)	2-20M	600 (24)	1-10M + 2-20M	1200 (48)	3-20M	1200 (48)	1-15M + 3-20M	1500 (60)		
4800	(16)	2-15M	0	1-15M + 1-20M	0	2-20M	600 (24)	1-10M + 2-20M	600 (24)	1-15M + 2-20M	900 (36)	1-10M + 3-20M	1500 (60)						
5400	(18)	1-15M + 1-20M	0	2-20M	0	1-10M + 2-20M	600 (24)	3-20M	900 (36)	1-10M + 3-20M	1200 (48)								
6000	(20)	2-20M	0	1-10M + 2-20M	600 (24)	3-20M	900 (36)	1-15M + 3-20M	1200 (48)										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L4 Continued

					Lir	ntel - 12	"Thick	x 32" D	Deep (3	00mm 1	Thick x	800mm	Deep)	s = 18	" (450m	m)			
1 :	0								Unifo	rmly Dis	tributed	Load							
Lintei	Span	7.5k	N/m	11k	N/m	14.5	kN/m	18k	N/m	21.5	kN/m	29k	N/m	36.5	kN/m	43.5	kN/m	51k	N/m
		500	lb/ft	750	lb/ft	1000	Olb/ft	1250	0lb/ft	1500	Olb/ft	2000	0lb/ft	250	0lb/ft	300	0lb/ft	350	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	0												
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0								
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	900 (36)	2-15M	900 (36)
300	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	900 (36)	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	1-15M + 1-20M	900 (36)	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)
4200	(14)	1-20M	0	2-15M	0	2-15M	0	1-15M + 1-20M	0	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)	1-10M + 2-20M	1350 (54)		
4800	(16)	2-15M	0	1-15M + 1-20M	0	1-15M + 1-20M	0	1-15M + 1-20M	900 (36)	2-20M	900 (36)	1-10M + 2-20M	1350 (54)	3-20M	1350 (54)				
5400	(18)	1-15M + 1-20M	0	1-15M + 1-20M	0	1-15M + 1-20M	0	2-20M	900 (36)	1-10M + 2-20M	900 (36)	3-20M	1350 (54)	1-15M + 3-20M	1800 (72)				
6000	(20)	1-15M + 1-20M	0	2-20M	0	1-10M + 2-20M	900 (36)	1-15M + 2-20M	900 (36)	3-20M	1350 (54)	1-15M + 3-20M	1800 (72)						

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L5 6" Lintel Reinforcement Concentrated Load

						Lintel -	6" Thic	k x 8" C	Deep (1	50mm 1	hick x	200mm	Deep),	s = 3"	(75mm)				
Lintal	Cnon								Unf	actored	Point L	oad							
Linter	Span	4k	(N	6	٨N	8	٨N	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130	0lb	170	0lb	220	00lb	260	0lb	310	0lb	350	00lb	400	0lb	440	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	YES												
1800	(6)	1-15M	NO																
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 1-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 6	"Thick	x 12" C	eep (1	50mm 1	Thick x	300mm	Deep),	s = 6"	(150mn	ו)			
Lintol	Span			~					Unf	actored	Point L	oad							
Linter	Span	4	٢N	6.5	kΝ	94	٨N	11.5	ōkN	14	kN	16.5	5kN	19	kN	21.5	5kN	24	kN
		80		140	00lb	200	Olb	250	0lb	310	olb	370	olb		00lb	480	0lb		ollb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES										
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES				
2400	(8)	1-15M	NO	1-15M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES								
3000	(10)	1-20M	NO	2-15M	NO														
3600	(12)	1-15M + 1-20M	NO																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 4.

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L5 Continued

					L	intel - 6	"Thick	x 16" D	eep (1	50mm 1	hick x	400mm	Deep)	s = 8"	(200mn	n)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintei	Span	4k	:N	7⊧	٨N	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		800	Olb	150	00lb	220	00lb	290	0lb	350	0lb	420	0lb	470	00lb	530	0lb	600	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES		
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-20M	YES				
3000	(10)	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES								
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES	1-15M + 2-20M	YES								
4200	(14)	2-15M	NO	2-20M	NO	1-15M + 2-20M	YES												
4800	(16)	2-20M	NO	1-15M + 2-20M	NO														
5400	(18)	1-15M + 2-20M	NO																
6000	(20)																		

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 6	"Thick	x 24" D	eep (1	50mm T	hick x (600mm	Deep),	s = 12"	(300mi	m)			
Lintol	Span								Uni	actored	Point L	oad							
Linter	Span	4k	٨N	8	٨N	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170	00lb	260	00lb	350	00lb	440	0lb	530	0lb	620	00lb	710	0lb	800	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3600	(12)	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	2-20M	YES	1-10M + 2-20M	YES				
4200	(14)	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES	1-15M + 2-20M	YES						
4800	(16)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES	1-15M + 2-20M	YES	1-15M + 3-20M	YES						
5400	(18)	2-15M	NO	2-20M	NO	1-10M + 2-20M	YES	3-20M	YES	1-15M + 3-20M	YES								
6000	(20)	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	YES	1-15M + 3-20M	YES										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars. 2.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L5 Continued

					Li	intel - 6	"Thick	x 32" D	eep (1	50mm T	hick x 8	800mm	Deep),	s = 18"	(450mi	n)			
Lintel	0								Uni	actored	Point L	oad							
Lintel	Span	4kN	J/m	9kN	J/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	0lb/ft	4200	Olb/ft	5300	Olb/ft	6500	0lb/ft	7600	0lb/ft	8700	Dlb/ft	9800	Olb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	1-20M	YES	1-15M + 1-20M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	1-20M	YES	2-15M	YES				
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES						
4200	(14)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES								
4800	(16)	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	1-10M + 2-20M	YES								
5400	(18)	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES										
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-10M + 2-20M	YES										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L6 8" Lintel Reinforcement Concentrated Load

						Lintel -	8"Thic	k x 8" C)eep (2	00mm 1	Thick x	200mm	Deep)	s = 3"	(75mm))			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	(N	6	٨N	84	٨N	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130	0lb	170	0lb	220	0lb	260	olb	310	0lb	350	0lb	400	0lb	440	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES										
1800	(6)	1-15M	NO	1-20M	NO														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing"

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					L	intel - 8	"Thick	x 12" C	eep (2	00mm 1	Thick x	300mm	Deep)	, s = 6"	(150mn	n)			
Lintol	Span								Unf	actored	Point L	oad							
Linter	Span	4	٨N	6.5	δkN	94	٨N	11.5	5kN	14	kN	16.5	5kN	19	kN	21.5	5kN	24	kN
		80	0lb	140	00lb	200	00lb	250	00lb	310	olb	370	0lb	420	00lb	480	00lb	530	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	1-15M + 1-20M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-10M + 2-20M	YES				
3000	(10)	1-20M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO										
3600	(12)	1-15M + 1-20M	NO	1-10M + 2-20M	NO														
4200	(14)	1-10M + 2-20M	NO																
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 1-15M + 2-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L6 Continued

					L	intel - 8	"Thick	x 16" D	eep (2	00mm 1	hick x	400mm	Deep)	s = 8"	(200mn	n)			
Lintel	0								Unf	actored	Point L	oad							
Linter	Span	4k	N.	7⊧	٨N	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		800	Olb	150	00lb	220	0lb	290	00lb	350	0lb	420	0lb	470	00lb	530	0lb	600	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES								
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3000	(10)	1-15M	NO	1-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-15M + 2-20M	YES				
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	YES	1-10M + 3-20M	YES						
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO										
4800	(16)	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO												
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO														
6000	(20)	3-20M	NO																

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 8'	'Thick	x 24" D	eep (20	00mm T	hick x	600mm	Deep),	s = 12"	(300m	m)			
Lintol	Span								Unf	actored	Point L	oad							
Linter	Span	4k	٢N	8	٢N	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170	0lb	260	0lb	350	0lb	440	0lb	530	0lb	620	00lb	710	0lb	800	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES										
1200	(4)	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	1-15M + 1-20M	YES	2-20M	YES		
3600	(12)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	1-10M + 2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-15M + 2-20M	YES	1-10M + 3-20M	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES						
5400	(18)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	YES								
6000	(20)	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 4.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4. 5.

Table L6 Continued

					Li	ntel - 8'	"Thick	x 32" D	eep (20	00mm T	hick x	800mm	Deep),	s = 18"	(450mi	m)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4kN	J/m	9kN	J/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	530	Olb/ft	6500	Olb/ft	7600	0lb/ft	870	Olb/ft	9800	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES										
1200	(4)	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES										
1500	(5)	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	2-15M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES		
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	YES						
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	YES								
5400	(18)	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	3-20M	YES								
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L7 10" Lintel Reinforcement Concentrated Load

					L	intel -	10" Thic	:k x 8" [Deep (2	250mm	Thick x	200mn	n Deep)	, s = 3"	(75mm)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintei	Span	4k	٨N	6	٨N	8	κN	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130	0lb	170	0lb	220	0lb	260	0lb	310	0lb	350	00lb	400	0lb	440)0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES								
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES						
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO										
2400	(8)	2-15M	NO																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 10	0"Thick	(x 12" l	Deep (2	250mm	Thick x	300mn	n Deep)), s = 6"	(150mr	n)		-	
Lintol	Span			~					Unf	actored	Point L	oad							
Linter	Span	4k	٢N	6.5	kΝ	9k	٨N	11.5	5kN	14	kN	16.5	5kN	19	kN	21.5	5kN	24	kN
		80	Olb	140	00lb	200	Olb	250	olb	310	olb	370	olb		00lb	480	0lb		olb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES								
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES	1-15M + 1-20M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-10M + 2-20M	YES	3-20M	YES		
3000	(10)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO								
3600	(12)	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO												
4200	(14)	1-10M + 2-20M	NO	3-20M	NO														
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 4.

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L7 Continued

					Li	ntel - 10)" Thick	(x 16" [Deep (2	250mm	Thick x	400mm	ו Deep)	, s = 8"	(200mr	n)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4k	N.	7⊧	٨N	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		800	Olb	150	0lb	220	0lb	290	0lb	350	00lb	420	0lb	470	00lb	530	0lb	600	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-15M	YES	1-15M	YES												
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	YES	2-20M	YES	1-10M + 2-20M	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES		
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	YES						
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO								
4800	(16)	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO										
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO												
6000	(20)	3-20M	NO	1-10M + 3-20M	NO														

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Liı	ntel - 10	"Thick	x 24" C	Deep (2	50mm 1	Thick x	600mm	Deep)	s = 12'	' (300m	m)			
Lintal	Span								Unf	actored	Point L	oad							
Linter	Span	4k	(N	8	(N	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	0lb	170	0lb	260	00lb	350	00lb	440	00lb	530	0lb	620	00lb	710	olb	800	0lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-15M	YES														
1200	(4)	1-10M	NO	1-15M	NÓ	1-15M	NO	1-15M	YES										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	YES	1-10M + 2-20M	YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	YES	1-15M + 2-20M	YES		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	YES				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO						
5400	(18)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO								
6000	(20)	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

NOTES

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

^{1.} Stirrup spacing (s) and end distance are given in "mm" and "inch"

Table L7 Continued

					Liı	ntel - 10	"Thick	x 32" C	eep (2	50mm 1	Thick x	800mm	Deep)	, s = 18'	" (450m	m)			
Lintal	Cnon								Unf	actored	Point L	oad							
Lintel	Span	4kN	J/m	9kN	√/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	Olb/ft	530	Olb/ft	6500	0lb/ft	760	0lb/ft	870	Olb/ft	9800	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	M NO 1-10M NO			1-10M	NO	1-10M	YES										
1200	(4)	1-10M	NO	1-15M	NO	1-15M	YES												
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES	1-15M + 1-20M	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO						
5400	(18)	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	3-20M	NO								
6000	(20)	2-15M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-15M + 3-20M	NO								

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing."

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 12" Lintel Reinforcement Concentrated Load

					L	intel -	12" Thio	ck x 8" [Deep (3	300mm	Thick x	200mn	n Deep)	, s = 3"	(75mm)			
Lintal	Cnon								Unf	factored	Point L	oad							
Linter	Span	4k	(N	64	٨N	84	٨N	10	kN	12	kN	14	kN	16	kN	18	kN	20	kN
		80	Olb	130	0lb	170	0lb	220	0lb	260	0lb	310	0lb	350	00lb	400	0lb	440	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-20M	YES								
1200	(4)	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	2-15M	YES								
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	YES				
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO								
2400	(8)	2-15M	NO	2-20M	NO														
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

Stirrup spacing (s) and end distance are given in "mm" and "inch" 1.

2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89mm (3.5") from bottom of lintel. З.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 5.

Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Li	ntel - 12	2" Thick	c x 12" l	Deep (3	300mm	Thick x	300mn	n Deep)), s = 6"	(150mi	m)			
Lintol	Span								Unf	actored	Point L	oad							
Linter	Opan	4	N	6.5	δkN	94	(N	11.5	5kN	14	kN	16.5	5kN	19	kN	21.5	5kN	24	kN
		80		_	00lb		Olb	250		310	olb	370			00lb	480			DOID
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	1-15M + 1-20M	YES
2400	(8)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	YES	1-10M + 3-20M	YES
3000	(10)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	YES				
3600	(12)	2-15M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO										
4200	(14)	2-20M	NO	3-20M	NO	4-20M	NO												
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing". 4.

5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 Continued

					Li	ntel - 12	2"Thick	(x 16" [Deep (3	800mm	Thick x	400mn	n Deep)	, s = 8"	(200mi	n)			
Lintal	Cnon								Unf	actored	Point L	oad							
	Span	4k	(N	71	٨N	10	kN	13	kN	16	kN	19	kN	21	kN	24	kN	27	kN
		80	Olb	150	0lb	220	00lb	290	0lb	350	0lb	420	0lb	470	00lb	530	0lb	600	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-15M	NO	1-15M	NO												
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	YES		
3600	(12)	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO				
4200	(14)	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO								
4800	(16)	2-20M	NO	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO										
5400	(18)	1-10M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO												
6000	(20)	3-20M	NO																

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

					Lir	ntel - 12	"Thick	x 24" C	eep (3	00mm 1	Thick x	600mm	Deep)	, s = 12'	' (300m	m)			
Lintol	Span								Unf	actored	Point L	oad							
Linter	Opan	4	٢N	8	٨N	12	kN	16	kN	20	kN	24	kN	28	kN	32	kN	36	kN
		80	Olb	170	00lb	260	Olb	350	olb	440	olb	530	0lb	620	00lb	710	0lb	800	00lb
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO	1-15M	NO														
1200	(4)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-10M + 3-20M	NO	4-20M	NO				
5400	(18)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-10M + 3-20M	NO	4-20M	NO						
6000	(20)	2-20M	NO	1-10M + 2-20M	NO	3-20M	NO	1-15M + 3-20M	NO										

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Table L8 Continued

					Lir	ntel - 12	"Thick	x 32" C	Deep (3	00mm 1	Thick x	800mm	Deep)	s = 18	" (450m	m)			
Lintel	0								Unf	actored	Point L	oad							
Lintel	Span	4kN	l/m	9kN	√/m	14k	N/m	19k	N/m	24k	N/m	29k	N/m	34k	N/m	39k	N/m	44k	N/m
		800	lb/ft	2000	Olb/ft	3100	Olb/ft	4200	0lb/ft	530	Olb/ft	6500	0lb/ft	760	0lb/ft	870	Olb/ft	980	0lb/ft
mm	(ft)	Bottom Reinf. Steel	Stirrup End Distance																
900	(3)	1-10M	NO																
1200	(4)	1-10M	NO	1-15M	NO	1-15M	NO												
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	2-20M	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	2-20M	NO	1-15M + 2-20M	NO		
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO				
4800	(16)	2-15M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-10M + 2-20M	NO	3-20M	NO						
5400	(18)	1-15M + 1-20M	NO	1-15M + 1-20M	NO	1-15M + 1-20M	NO	3-20M	NO	3-20M	NO	1-15M + 3-20M	NO						
6000	(20)	1-15M + 1-20M	NO	2-20M	NO	1-10M + 2-20M	NO	1-15M + 2-20M	NO	1-15M + 3-20M	NO								

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

3. Bottom reinforcement located 89mm (3.5") from bottom of lintel.

4. This table to be used in conjunction with the "Lintel Design Limitations" & "Lintel Drawing".

5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

Concentrated Point Load Table

Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening

Solid Wall Length Under a Point Load, m(ft)	0.91 (3)	1.22 (4)	1.52 (5)
Maximum Unfactored Point Load, kN	225	300	375

NOTES:

- 1. Provide beam pockets, as necessary.
- 2. In addition to the wall reinforcing required in the following tables, two additional 15M vertical bars shall be installed directly below the point load.
- 3. Maximum unfactored point loads given in Table C. 1 are only the wall capacity. It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

Stair Opening Tables

Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings

Seismic Zone Classification: Sa $(0.2) \le 1.75$

Hourly Wind Pressure: $q_{1/50} \le 1.05$

							Horizor	ntal Steel (Size and S	Spacing),	mm (in)		
W	all	Maximum S (Laterally U	tair Opening nsupported				Se	ismic Zone	Classific	ation, Sa(0.2)		
Thick	ness	Ler	ngth the Wall)	Block Height (in)		≤ 0.4			≤ 0.7			≤ 1.75	
							F	lourly Wind	d Pressure	e, q _{1/50} (kP	a)		
mm	(in)	m	(ft)			≤ 0.5			≤ 0.75			≤ 1.05	
150	(0)	4.0	(15)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
150	(6)	4.6	(15)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
000	(0)	5.0	(17)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
200	(8)	5.2	(17)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
050	(10)	5.0	(17)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
250	(10)	5.2	(17)	16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)
000	(10)	5.0	(10)	12" and 18"	10M @	450	(18)	10M @	450	(18)	15M @	300	(12)
300	300 (12) 5.8	5.8	(19)	16"	10M @	400	(16)	10M @	400	(16)	15M @	300	(12)

NOTES

1. This table to be used in conjunction with the "Design Parameters".

2. This table applies to all height of above grade walls where there is no lateral supports at the floor level because of stair opening.

3. The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.

4. Single bars are to be staggered and the vertical bars are to be placed between these staggered bars, as per Detail A.1 and A.2.

5. Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of 900mm (3'-0"), bend bars if necessary at wall corners.

6. Provide a minimum of 1.22m (4'-0") length of laterally supported wall on each side of the opening. The 1.22m (4'-0") length may be a perpendicular wall on the same side as the stair opening. Bend horizontal bars around the corner to provide the minimum required 900mm (3'-0") extension.

7. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.

8. Place the reinforcing for 6," 8" and 10" thick wall in accordance with Detail A.1.

- 9. Provide two layers of indicated horizontal reinforcing for 300mm (12") walls. Place each layer as shown in Detail A.2.
- 10. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars
- Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.
 Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.

Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification $Sa(0.2) \le 0.7$, Hourly Wind Pressure, $q_{1/50} \le 1.05$ kPa, and Backfill

Seismic Zone Classification: Sa $(0.2) \le 0.7$

Hourly Wind Pressure: $q_{1/50} \le 1.05$

Backfill Equivalent Fluid Density: 480 kg/m3 (30pcf)

						Hor	izontal St	eel (Size a	and Spacing)	, mm (in)				
W Thick		Block Height					Seismic 2	Zone Clas	sification, Sa	(0.2)				
		(in)		2.44m (8')		3	.05m (10')	3	.66m (12'))	4.	27m (14')	
mm	(in)					Se	ismic Zon	e Classific	cation, Sa(0.2) ≤ 0.25				
150	(6)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)						
150	(6)	16"	15M @	400	(16)	2- 15M @	400	(16)						
200	(0)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	300	(12)
200	(8)	16"	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)	2- 15M @	400	(16)
050	(10)	12" and 18"	15M @	450	(18)	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)
250	(10)	16"	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)
000	(10)	12" and 18"	15M @	450	(18)	15M @	450	(18)	15M @	450	(18)	2- 15M @	450	(18)
300	(12)	16"	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	2- 15M @	400	(16)
						Seism	nic Zone C	Classificati	on, 0.25 < Sa	$a(0.2) \le 0.2$	7			
150	(0)	12" and 18"												
150	(6)	16"												
200	(0)	12" and 18"	2- 15M @	450	(18)									
200	(8)	16"	2- 15M @	400	(16)									
050	(10)	12" and 18"	2- 15M @	450	(18)	2- 15M @	450	(18)						
250	(10)	16"	15M @	400	(16)	2- 15M @	400	(16)	RE	TE			$\mathbf{D}\mathbf{N}$	IC
000	(10)	12" and 18"	15M @	450	(18)	2- 15M @	450	(18)	2- 15M @	450	(18)			
300	(12)	16"	15M @	400	(16)	2- 15M @	400	(16)	2- 15M @	400	(16)	$A \square$	$\left[\right]$	

NOTES

1. This table to be used in conjunction with the "Design Parameters".

2. This table applies to all height of below grade walls where there is no lateral supports at the floor level because of stair opening.

3. The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.

4. The below grade wall maybe backfilled up to 6" below the top of the wall.

5. Single bars are to be staggered between first two slots of ICF web on inside face of wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.

6. Where two bars are specified, they are to be placed as a single bundled bar staggered between the first two slots of the ICF web on inside face of the wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.

7. Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of 900mm (3'-0"), bend bars if necessary at wall corners.

 Provide a minimum of 1.22m (4'-0") length of laterally supported wall on each side of the opening. The 1.22m (4'-0") length may be a perpendicular wall on the same side as the stair opening. Bend horizontal bars around the corner to provide the minimum required 900mm (3'-0") extension.

9. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.

10. Reinforce the foundation wall at the stair opening as per the below grade wall reinforcement tables and this table for a minimum of 1.22m (4'-0") beyond each end of the stair opening for foundation wall that would not otherwise require reinforcing.

11. Basement walls with stair opening at locations with Seismic Zone Classification Sa (0.2) > 0.7 or Backfill Equivalent Fluid Density > 480 kg/m3 (30pcf) shall be designed by a professional engineer.

12. Alternating horizontal bar spacing of 12" o.c. and 24" o.c. may be used to achieve an average spacing of 18" o.c. where 18" o.c. spacing is specified for horizontal bars.

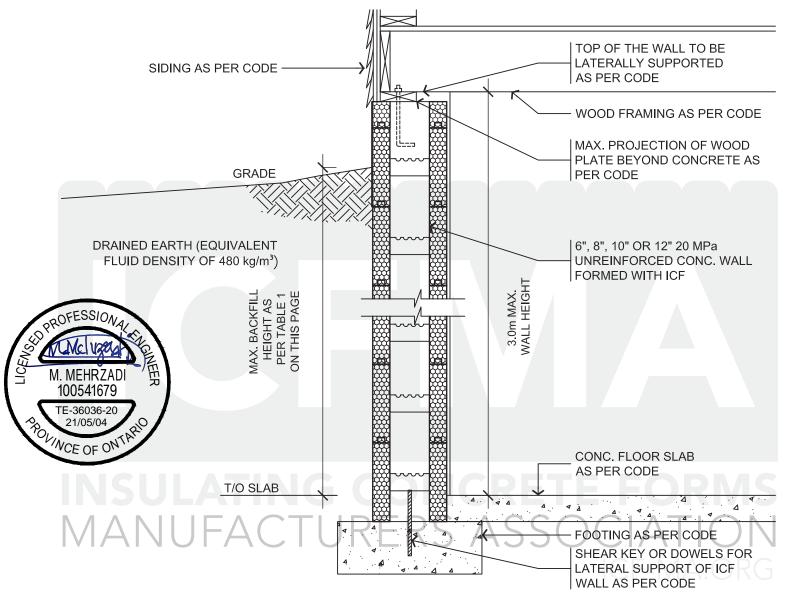
13. Provide 3 horizontal bars in every two rows of 18" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.

14. Provide 4 horizontal bars in every three rows of 16" high block to achieve an average spacing of 12" o.c. where 12" spacing o.c. is specified for horizontal bars.

Table A.13. Bar Spacing Required at Each Side of the Stair Opening

		Latera	Ily Unsupported Le	ength of the Wall (Sta	air Opening Length), m (ft)	
STable , mm (in)	5.7 (19)	5.1 (17)	4.5 (15)	3.9 (13)	2.7 (9)	2.1 (7)	1.5 (5)
				S _{REDUCED}			
1200 (48)	350 (14)	375 (15)	400 (16)	450 (18)	550 (22)	625 (25)	725 (29)
1050 (42)	300 (12)	325 (13)	350 (14)	400 (16)	475 (19)	550 (22)	625 (25)
1000 (40)	275 (11)	300 (12)	325 (13)	375 (15)	450 (18)	525 (21)	600 (24)
900 (36)	250 (10)	275 (11)	300 (12)	325 (13)	400 (16)	475 (19)	550 (22)
800 (32)	225 (9)	250 (10)	275 (11)	300 (12)	375 (15)	425 (17)	475 (19)
750 (30)	200 (8)	225 (9)	250 (10)	275 (11)	350 (14)	400 (16)	450 (18)
600 (24)	175 (7)	175 (7)	200 (8)	225 (9)	275 (11)	300 (12)	350 (14)
450 (18)			150 (6)	150 (6)	200 (8)	225 (9)	275 (11)
400 (16)				150 (6)	175 (7)	200 (8)	225 (9)
300 (12)						150 (6)	175 (7)

NOTES:


1. $S_{REDUCED}$ = the bar spacing (mm/in) required at the sides of the stair opening.

2. S_{TABLES} = the required bar spacing (mm/in) for a laterally supported wall as determined from above grade and below grade walls tables.

3. If the spacing of the additional vertical reinforcing required on each side of openings, described in the equation given in part 5.5., is less than 150mm (6"), a local design professional shall be retained to prepare the design in accordance with applicable standards.

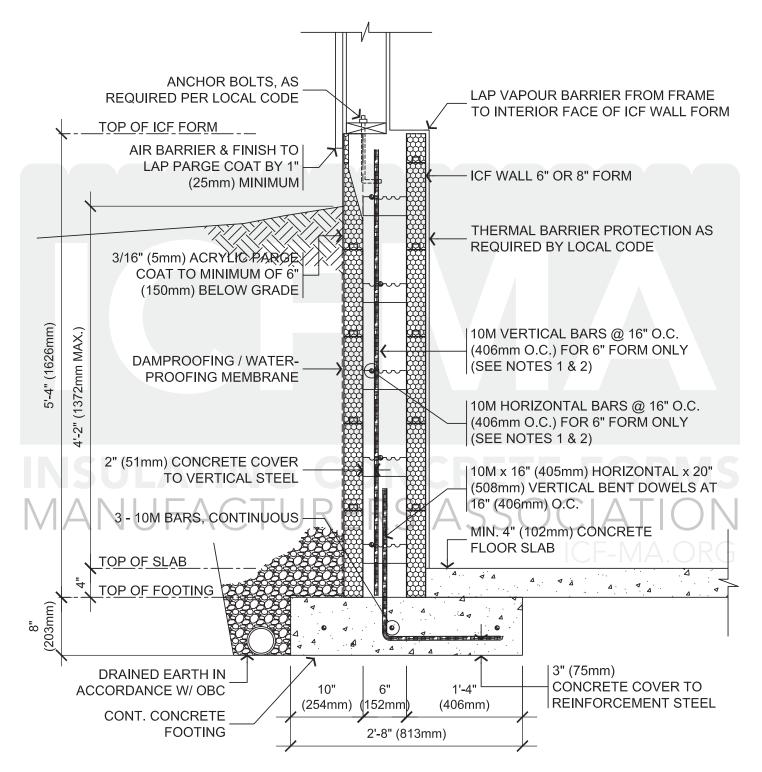
Laterally Supported Foundation Wall Detail and Table

Detail B.2. Laterally Supported Foundation Wall

Table B.6. Maximum Height of Finish Ground Above Basement Floor

	Maximum Height of Finish	Ground Above Basement Floor	
		Height of Foundation Wall	
Minimum Wall Thickness	≤ 2.5m (8'-2")	>2.5m & ≤2.75m (9'-0")	>2.75m & ≤3.0m (9'-10")
6"	1.8m (5'-10")	1.6m (5'-3")	1.6m (5'-3")
8"	2.3m (7'-6")	2.3m (7'-6")	2.2m (7'-2")
10"	2.3m (7'-6")	2.6m (8'-6")	2.85m (9'-4")
12"	2.3m (7'-6")	2.6m (8'-6")	2.85m (9'-4")

NOTES:

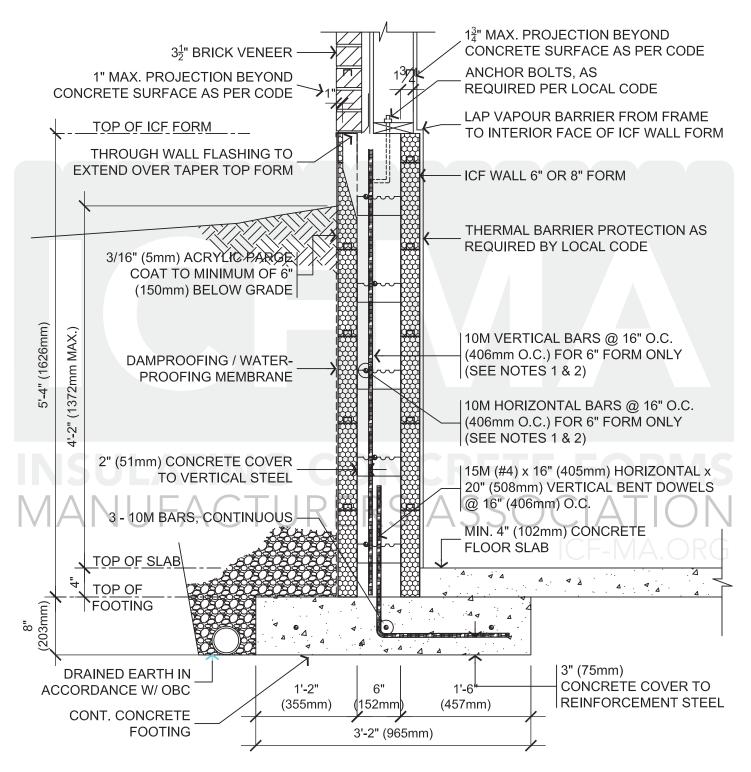

2. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.

3. This table is a copy of NBCC 2015 T.9.15.4.2-A and OBC 2012(r2020) T.9.15.4.2-A.

4. This table to be used in conjunction with section 5.6. of this design manual.

^{1.} This section references Part 9 of the 2015 National Building Code of Canada.

Laterally Unsupported Foundation Wall Detail and Table (Knee Wall)



NOTES:

- 1. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
- 2. Wall reinforcing not required when using 8" forms or thicker.
- 3. Wall reinforcing not required for 6" forms where the backfill height above basement floor does not exceed 2'-7".
- 4. Footing reinforcement and dowels are required for all cases.
- 5. Refer to section 5.7., for additional information.

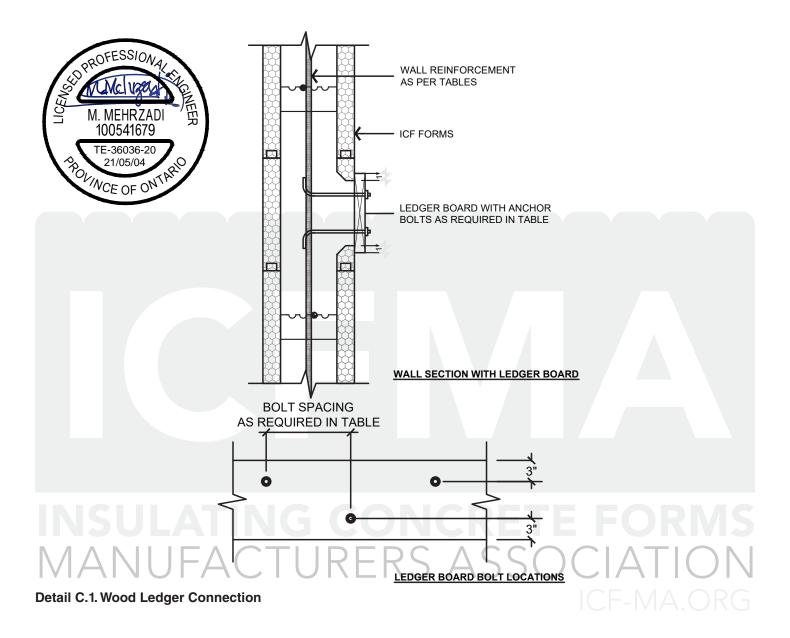
Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)

NOTES:

1. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.

2. Wall reinforcing not required when using 8" forms.

3. Wall reinforcing mot required for 6" forms where the backfill height above basement floor does not exceed 2'-7".


4. Footing reinforcement and dowels are required for all cases.

5. Refer to section 5.7., for additional information.

Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer

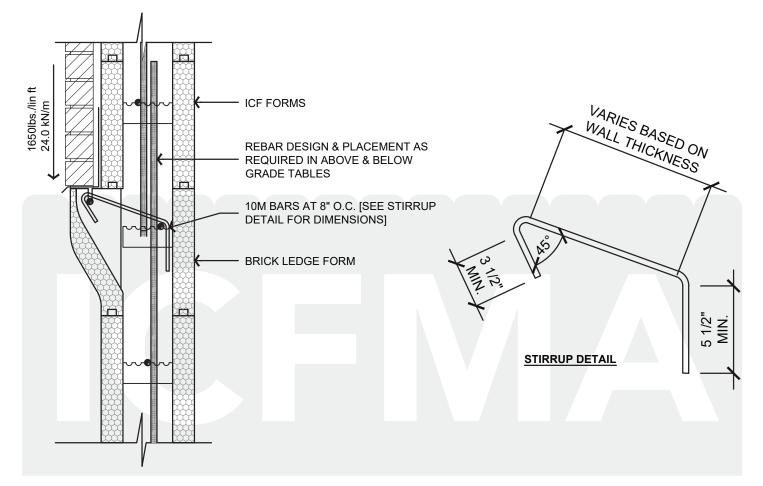
Ledger Connection Detail and Table

Table C.2. Floor Ledger Anchor Bolts Size and Spacing

			Minimum Spacing of	Staggered Anchors, in		
Anchor Bolt Diameter	Tie Spaing			Floor span, ft (m)		
		8' (2.44m)	12' (3.66m)	16' (4.88m)	20' (6.1m)	24' (7.32m)
1/01	6"	18"	12"	12"	6"	6"
1/2"	8"	16"	16"	8"	8"	8"
E /01	6"	24"	18"	12"	12"	6"
5/8"	8"	24"	16"	16"	8"	8"

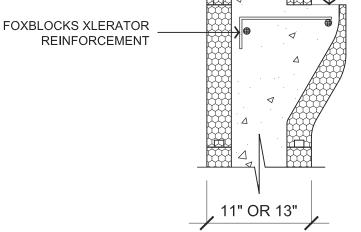
NOTES:

1. Anchor bolts to be installed at the indicated spacing and staggered as shown.


- 2. Design assumes floor ledger supports vertical floor load only. Design of floor diaphragm by others.
- 3. Design loads: 40psf (1.9 kPa) floor live load, 15psf (0.7 kPa) floor dead load.

4. Anchor bolts shall conform to the requirements of ASTM standard A307.

5. Anchor bolt connection to be installed at Dry Service Condition.


The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada Version 2021-1 ©2021 All Rights Reserved.

Brick Ledge Detail and Table

Detail C. 2. Brick Ledge Connection

MANUFACTURERS ASSOCIATION

10 5/16" 10 5/16" 10 5/16" 10 5/16"

STIRRUP DETAIL

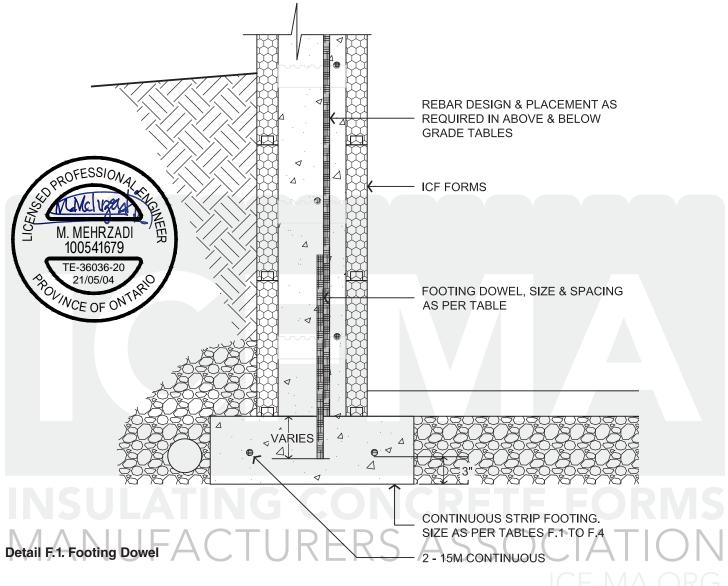
Detail C.3. Fox Blocks xLerator Ledge Reinforcement

Table C.3 Brick Ledge Load Capacity

	Application	Capacity
Brick	Max 4" thick	0 cm (211 c") bish
	Max 20kN/cu.m	9.6m (31'-6") high
Wood Floor Joists		
	0.7kPa (15psf) Dead Load	6.4m (21') Truibutary floor width
	1.9kPa (40psf) Live Load	
Other	maximum factored load	24kN/m (1650 plf)

NOTES:

1. 1. Concrete Ledge reinforcement is to support floor framing and masonry veneer in conformance with the "Design Limitations"


2. 2. The concrete ledge is to support uniformly distributed loads only. It is not to support concentrated load.

- 3. 3. The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing.
- 4. 4. The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer.
- 5. 5. The maximum brick height given does not account for windows. To include the effect of windows, it is necessary to calculate an effective brick height.

6. The ledge reinforcement is 10M hooked rebar as shown in Detail C.2. It is to be placed 6" or 8" on center as shown.

Footing Details and Tables

Table F.1- Footing Dowels Size and Spacing

		Maximum S	Spacing of Vertical Footing	g Dowels, in	
Rebar Diameter			Backfill Height, ft (m)		
-	4' (1.22m)	6' (1.83m)	8' (2.44m)	10' (3.05m)	12' (3.66)
Seismic Zone Classification	on: Sa(0.2) ≤ 0.25		·	· · · · · · · · · · · · · · · · · · ·	
10M	48"	48"	40"	8"	8"
15M	48"	48"	48"	16"	8"
Seismic Zone Classificatio	on: $Sa(0.2) \le 1.20$			·,	
10M	24"	24"	16"	8"	
15M	24"	24"	24"	8"	8"
Seismic Zone Classification	on: Sa(0.2) ≤ 1.75			·,	
10M	24"	24"	8"		
15M	24"	24"	16"	8"	8"

NOTES:

1. Footing Dowels to be installed as per Details F.1.

2. Provide 18" long straight dowels for $Sa(0.2) \le 0.4$ embedded 6" into the footing.

3. Provide 30"V x 8"H bent dowels for Sa(0.2) > 0.4 embedded 8" into the footing.

4. Provide 30"V x 8"H bent dowels embedded 8" into the footing at shear walls locations, matching the size and spacing of vertical bars of the shear walls.

The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada Version 2021-1 @2021 All Rights Reserved.

ICF Wall	Minimum Footing Width x Thickness, in x in								
Thickness, in (mm)			Allo	Allowable Soil Bearing Pressure, psf (kPa)					
(((((((((((((((((((((((((((((((((((((((3000) (144)	2500	(120)	2000	0 (96)	1500 (72)		
	Т	wo Storey - ICF B	asement Walls, V	Vood Main Floor	Walls, and Wood	Second Floor Wa	lls		
6 (150)	16"	x 6"	16"	x 6"	16"	x 6"	20"	x 6"	
8 (200)	18"	x 6"	18"	x 6"	18"	x 6"	22"	x 6"	
10 (250)	20"	x 6"	20"	x 6"	20"	x 6"	24"	x 6"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	26"	x 8"	
		Two Storey - ICF	Basement Walls,	ICF Main Floor V	Valls, and Wood §	Second Floor Wall	s		
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
8 (200)	18"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
10 (250)	20"	x 6"	24"	x 8"	30"	x 10"	40"	x 10"	
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"	
		Two Storey - ICF	Basement Walls	, ICF Main Floor	Walls, and ICF S	econd Floor Walls	5		
6 (150)	18"	x 8"	20"	x 8"	26"	x 10"	34"	x 10"	
8 (200)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12'	
10 (250)	26"	x 8"	30"	x 10"	38"	x 12"	50"	x 14"	
12 (300)	26"	x 8"	32"	x 10"	40"	x 12"	52"	x 14"	
		One	Storey - ICF Base	ment Walls, and	Wood Main Floo	r Walls			
6 (150)	16"	x 6"	16"	x 6"	16"	x 6"	16"	x 6"	
8 (200)	18"	x 6"	18"	x 6"	18"	x 6"	18"	x 6"	
10 (250)	20"	x 6"	20"	x 6"	20"	x 6"	20"	x 6"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	22"	x 6"	
· ·		One	Storey - ICF Bas	ement Walls, and	l ICF Main Floor	Walls			
6 (150)	16"	x 6"	16"	x 6"	18"	x 6"	24"	x 8"	
8 (200)	18"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
10 (250)	20"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	36"	x 10"	

Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads

1. All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.

2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.

3. This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:

a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity.

b. Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.

c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.

d. Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.

4. The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

ICF Wall	Minimum Footing Width x Thickness, in x in Allowable Soil Bearing Pressure, psf (kPa)								
Thickness, in									
(mm)	3000	(144)	2500 (120)		2000 (96)		1500 (72)		
	Τv	vo Storey - ICF B	asement Walls, V	lood Main Floor	Walls, and Wood	Second Floor Wa	lls		
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	28"	x 8"	
8 (200)	18"	x 6"	20"	x 6"	24"	x 8"	32"	x 10"	
10 (250)	20"	x 6"	20"	x 6"	26"	x 8"	34"	x 10"	
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	36"	x 10"	
	Т	wo Storey - ICF I	Basement Walls,	ICF Main Floor V	alls, and Wood	Second Floor Wall	s		
6 (150)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 12"	
8 (200)	22"	x 8"	26"	x 10"	32"	x 10"	44"	x 12"	
10 (250)	24"	x 8"	30"	x 10"	36"	x 10"	48"	x 14"	
12 (300)	26"	x 8"	32"	x 10"	38"	x 12"	52"	x 14"	
		Two Storey - ICF	Basement Walls	ICF Main Floor	Walls, and ICF S	econd Floor Walls			
6 (150)	22"	x 8"	26"	x 10"	32"	x 10"	44"	x 12"	
8 (200)	26"	x 10"	30"	x 10"	38"	x 12"	50"	x 14'	
10 (250)	30"	x 10"	36"	x 12"	44"	x 14"	58"	x 16"	
12 (300)	30"	x 10"	36"	x 12"	46"	x 14"	60"	x 16"	
		One	Storey - ICF Base	ment Walls, and	Wood Main Floo	r Walls			
6 (150)	16"	x 6"	16"	x 6"	18"	x 6"	24"	x 8"	
8 (200)	18"	x 6"	18"	x 6"	20"	x 6"	26"	x 8"	
10 (250)	20"	x 6"	20"	x 6"	22"	x 6"	28"	x 8"	
12 (300)	22"	x 6"	22"	x 6"	22"	x 6"	30"	x 8"	
i	I	One	Storey - ICF Bas	ement Walls, and	ICF Main Floor	Walls			
6 (150)	16"	x 6"	20"	x 8"	24"	x 8"	32"	x 10"	
8 (200)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 10"	
10 (250)	22"	x 8"	26"	x 8"	32"	x 10"	44"	x 12"	
12 (300)	24"	x 8"	28"	x 10"	34"	x 10"	46"	x 12"	

Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤ 2kPa

1. All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.

2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.

3. This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:

a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity.

b. Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.

c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.

d. Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.

4. The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

ICF Wall	Minimum Footing Width x Thickness, in x in								
Thickness, in (mm)	Allowable Soil Bearing Pressure, psf (kPa)								
(((((((((((((((((((((((((((((((((((((((3000	0 (144)	2500 (120)		2000 (96)		1500 (72)		
	Т	wo Storey - ICF B	asement Walls, V	lood Main Floor	Walls, and Wood	Second Floor Wa	lls		
6 (150)	18"	x 8"	22"	x 8"	26"	x 10"	36"	x 10"	
8 (200)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 10"	
10 (250)	20"	x 6"	24"	x 8"	30"	x 10"	40"	x 10"	
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"	
		Two Storey - ICF I	Basement Walls,	ICF Main Floor W	alls, and Wood	Second Floor Wall	S		
6 (150)	22"	x 8"	28"	x 10"	34"	x 12"	44"	x 14"	
8 (200)	26"	x 10"	30"	x 10"	38"	x 12"	50"	x 14'	
10 (250)	28"	x 10"	34"	x 12"	42"	x 12"	56"	x 16'	
12 (300)	30"	x 10"	36"	x 12"	44"	x 14"	58"	x 16'	
		Two Storey - ICF	Basement Walls,	ICF Main Floor	Walls, and ICF S	econd Floor Walls	i		
6 (150)	26"	x 10"	30"	x 12"	38"	x 12"	50"	x 14"	
8 (200)	30"	x 12"	34"	x 12"	44"	x 14"	58"	x 16'	
10 (250)	34"	x 12"	40"	x 14"	50"	x 16"	66"	x 18"	
12 (300)	34"	x 12"	40"	x 14"	50"	x 16"	68"	x 18"	
		Ones	Storey - ICF Base	ment Walls, and	Wood Main Floo	r Walls			
6 (150)	16"	x 6"	18"	x 6"	22"	x 8"	30"	x 10"	
8 (200)	18"	x 6"	20"	x 6"	24"	x 8"	32"	x 10"	
10 (250)	20"	x 6"	22"	x 6"	26"	x 8"	34"	x 10"	
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	38"	x 10"	
i		One	Storey - ICF Bas	ement Walls, and	I ICF Main Floor	Walls			
6 (150)	20"	x 8"	24"	x 8"	30"	x 10"	38"	x 12'	
8 (200)	22"	x 8"	28"	x 10"	34"	x 10"	44"	x 12'	
10 (250)	26"	x 8"	-30"	x 10"	38"	x 12"	50"	x 14'	
12 (300)	26"	x 8"	32"	x 10"	40"	x 12"	52"	x 14'	

Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads ≤4kPa

1. All footings are to be reinforced with 2-15M continuous bars, as per drawing F.1.

2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.

3. This table does not include masonry veneer. Increase the footing width by 2" and the thickness by 1" for:

a. Every 12'-0" of masonry veneer for 3000 psf soil bearing capacity.

b. Every 10'-0" of masonry veneer for 2500psf soil bearing capacity.

c. Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.

d. Every 6'-0" of masonry veneer for 1500psf soil bearing capacity.

4. The footing size for locations with Sa (0.2) > 0.4 to be the larger of 30" wide by 12" deep or the size shown in the table.

This page left intentionally blank.

Appendix A: Equivalent Spectral Response Acceleration for ICF Walls, S_{a.ICF}

Province and LocationSauceBritish Columbia100 Mile House0.113Abbotsford0.486Agassiz0.338Alberni0.701Ashcroft0.160Bamfield1.010Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.131Crescent Valley0.101Crofton0.781Dawson Creek0.998Dease Lake0.174Fort Nelson0.172Fort Nelson0.174Fort Nelson0.170Glacier0.170Glacier0.170Golden River0.193Greenwood0.173Hope0.280Jordan River0.193Kamloops0.120Kamloops0.120Kaslo0.102Kitimat Townsite0.167Ladysmith0.768Ladysmith0.768Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langfor		-
100 Mile House 0.113 Abbotsford 0.486 Agassiz 0.338 Alberni 0.701 Ashcroft 0.160 Bamfield 1.010 Beatton River 0.083 Bella Bella 0.231 Bella Coola 0.172 Burns Lake 0.080 Cache Creek 0.157 Campbell River 0.482 Carmi 0.121 Chilliwack 0.333 Comox 0.536 Comox 0.536 Courtenay 0.121 Cranbrook 0.333 Comox 0.536 Courtenay 0.101 Crescent Valley 0.101 Crofton 0.781 Dawson Creek 0.098 Dease Lake 0.0174 Fernie 0.174 Fort Nelson 0.103 Fort St. John 0.193 Golden 0.170 Grand Forks 0.108 Greenwood<	Province and Location	S _{a,ICF}
Abbotsford0.486Agassiz0.338Alberni0.701Ashcroft0.160Bamfield1.010Beatton River0.083Bella Bella0.231Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Comox0.536Courtenay0.541Crescent Valley0.101Dog Creek0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.174Fort Nelson0.103Fort St. John0.103Glacier0.142Gold River0.138Greenwood0.113Hope0.280Jordan River0.980Kaslo0.102Kaslo0.122Kimberley0.133Kaslo0.123Kaslo0.123Kaslo0.124Kaslo0.126Kaslo0.127Kaslo0.128Kaslo0.128Kaslo0.128Kaslo0.126Kaslo0.127Kitimat Plant0.167Langford0.880Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890		
Agassiz0.338Alberni0.701Ashcroft0.160Bamfield1.010Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Fernie0.741Fort Nelson0.103Fort St. John0.094Glacier0.142Golden0.170Grane Forks0.193Greenwood0.113Hope0.280Jordan River0.280Kaslo0.102Kamloops0.122Kitimat Plant0.167Ladysmith0.167Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890Langford0.890<		0.113
Alberni0.701Ashcroft0.160Barnfield1.010Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Dog Creek0.091Dog Creek0.091Dog Creek0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.103Gold River0.180Golden0.170Grand Forks0.103Greenwood0.113Hope0.280Jordan River0.980Kaslo0.102Kaslo0.103Kaslo0.103Kaslo0.103Kaslo0.103Kaslo0.167Kitimat Townsite0.167Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880Langford0.880 <trtr><t< td=""><td>Abbotsford</td><td>0.486</td></t<></trtr>	Abbotsford	0.486
Ashcroft0.160Bamfield1.010Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.0174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Golden River0.130Grand Forks0.103Gordan River0.103Kaslo0.102Kaslo0.103Kaslo0.103Kaslo0.132Kaslo0.132Kaslo0.132Kaslo0.132Kaslo0.167Kitimat Townsite0.167Langford0.880Lillooet0.206	Agassiz	0.338
Bamfield1.010Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Crafton0.781Dawson Creek0.091Dog Creek0.174Fort Nelson0.174Fort Nelson0.174Gold River0.142Golden0.174Grand Forks0.193Greenwood0.173Hope0.280Jordan River0.980Kaslo0.103Kaslo0.123Kaslo0.124Kitimat Townsite0.167Ladysmith0.167Ladysmith0.380Lillooet0.890	Alberni	0.701
Beatton River0.083Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.138Greenwood0.113Hope0.280Jordan River0.980Kaslo0.122Kitimat Townsite0.167Ladysmith0.167Ladysmith0.363	Ashcroft	0.160
Bella Bella0.231Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.173Hope0.280Jordan River0.980Kaslo0.103Kaslo0.103Kaslo0.122Kitimat Townsite0.167Ladysmith0.369Langford0.890Lillooet0.890	Bamfield	1.010
Bella Coola0.172Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.0174Fort Nelson0.174Fort Nelson0.142Gold River0.142Golden0.170Grand Forks0.103Greenwood0.113Hope0.280Jordan River0.980Kaslo0.102Kaslo0.123Kaslo0.123Kitimat Townsite0.167Ladysmith0.369Lillooet0.890	Beatton River	0.083
Burns Lake0.080Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.174Fernie0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.140Gold River0.173Gold River0.174Greenwood0.113Hope0.280Jordan River0.980Kamloops0.122Kimberley0.130Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206	Bella Bella	0.231
Cache Creek0.157Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.174Fort Nelson0.174Fort Nelson0.142Gold River0.142Golden0.173Grand Forks0.103Greenwood0.113Hope0.280Jordan River0.980Kaslo0.122Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.380Lillooet0.890Lillooet0.890	Bella Coola	0.172
Campbell River0.482Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.174Fernie0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.173Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.122Kimberley0.130Kaslo0.122Kitimat Townsite0.167Ladysmith0.580Lillooet0.890	Burns Lake	0.080
Carmi0.120Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.102Kaslo0.122Kitimat Plant0.167Ladysmith0.369Langford0.890Lillooet0.890	Cache Creek	0.157
Castlegar0.100Chetwynd0.121Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.142Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.122Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.380Lillooet0.890Lillooet0.890	Campbell River	0.482
Chetwynd 0.121 Chilliwack 0.383 Comox 0.536 Courtenay 0.541 Cranbrook 0.138 Crescent Valley 0.101 Crofton 0.781 Dawson Creek 0.098 Dease Lake 0.091 Dog Creek 0.140 Duncan 0.816 Elko 0.174 Fernie 0.174 Fort Nelson 0.103 Fort St. John 0.094 Glacier 0.140 Gold River 0.142 Golden 0.174 Hope 0.280 Jordan River 0.183 Kaslo 0.113 Hope 0.280 Jordan River 0.183 Kaslo 0.122 Kimberley 0.130 Kelowna 0.122 Kitimat Townsite 0.167 Langford 0.890 Lillooet 0.206	Carmi	0.120
Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.103Kaslo0.122Kitimat Townsite0.167Ladysmith0.380Lillooet0.890	Castlegar	0.100
Chilliwack0.383Comox0.536Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.103Kaslo0.122Kitimat Townsite0.167Ladysmith0.380Lillooet0.890	Chetwynd	0.121
Courtenay0.541Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Golden0.170Graenwood0.173Hope0.280Jordan River0.980Kamloops0.123Kaslo0.103Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.206Lillooet0.206		0.383
Cranbrook0.138Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.103Hope0.280Jordan River0.980Kaslo0.103Kaslo0.122Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.890Lillooet0.206	Comox	0.536
Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Galacier0.142Gold River0.173Golden0.170Graenwood0.113Hope0.280Jordan River0.980Kamloops0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206	Courtenay	0.541
Crescent Valley0.101Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Galacier0.142Gold River0.173Golden0.170Graenwood0.113Hope0.280Jordan River0.980Kamloops0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206	-	
Crofton0.781Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kitimat Plant0.167Litimotef0.890Langford0.890Lillooet0.206		
Dawson Creek0.098Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Graenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.890Lillooet0.206	-	
Dease Lake0.091Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kanloops0.123Kaslo0.109Kitimat Plant0.167Litimat Townsite0.167Langford0.890Lillooet0.206		
Dog Creek0.140Duncan0.816Elko0.174Fernie0.174Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Duncan 0.816 Elko 0.174 Fernie 0.174 Fort Nelson 0.103 Fort Nelson 0.103 Fort St. John 0.094 Glacier 0.142 Gold River 0.748 Golden 0.170 Grand Forks 0.108 Greenwood 0.113 Hope 0.280 Jordan River 0.980 Kamloops 0.123 Kaslo 0.109 Kelowna 0.122 Kimberley 0.130 Kitimat Plant 0.167 Ladysmith 0.768 Langford 0.890 Lillooet 0.206		
Elko0.174Fernie0.174Fort Nelson0.103Fort Nelson0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.206	-	
Fernie 0.174 Fort Nelson 0.103 Fort St. John 0.094 Glacier 0.142 Gold River 0.748 Golden 0.170 Grand Forks 0.103 Greenwood 0.113 Hope 0.280 Jordan River 0.980 Kamloops 0.123 Kaslo 0.109 Kelowna 0.122 Kimberley 0.300 Kitimat Townsite 0.167 Ladysmith 0.768 Langford 0.890		
Fort Nelson0.103Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.206		
Fort St. John0.094Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Glacier0.142Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Gold River0.748Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Golden0.170Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Grand Forks0.108Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Greenwood0.113Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Ladysmith0.768Langford0.890Lillooet0.206		
Hope0.280Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206		
Jordan River0.980Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206		
Kamloops0.123Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206	•	
Kaslo0.109Kelowna0.122Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206		
Kelowna0.122Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206	•	
Kimberley0.130Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206	Kaslo	0.109
Kitimat Plant0.167Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206		
Kitimat Townsite0.167Ladysmith0.768Langford0.890Lillooet0.206		
Ladysmith0.768Langford0.890Lillooet0.206	Kitimat Plant	0.167
Langford 0.890 Lillooet 0.206	Kitimat Townsite	0.167
Lillooet 0.206	Ladysmith	0.768
	Langford	0.890
Lytton 0.219	Lillooet	0.206
	Lytton	0.219

Province and Location	S _{a,ICF}
Mackenzie	0.117
Masset	0.588
McBride	0.162
McLeod Lake	0.110
Merritt	0.175
Mission City	0.455
Montrose	0.102
Nakusp	0.102
Nanaimo	0.719
Nelson	0.103
Ocean Falls	0.100
Osoyoos	0.150
Parksville	0.665
Penticton	0.005
Port Alberni	0.138
Port Alice	0.721
Port Hardy	0.533
Port McNeill	0.546
Port Renfrew	1.010
Powell River	0.464
Prince George	0.089
Prince Rupert	0.264
Princeton	0.204
Qualicum Beach	0.652
Queen Charlotte City	1.025
Quesnel	0.088
Revelstoke	0.109
Salmon Arm	0.104
Sandspit	0.868
Sechelt	0.589
Sidney	0.823
Smith River	0.370
Smithers	0.090
Sooke	0.928
Squamish	0.434
Stewart	0.132
Tahsis	0.890
Taylor	0.093
Terrace	0.145
Tofino	1.018
Trail	0.101
Ucluelet	1.033
Vancouver Region	
Burnaby (Simon Fraser Univ.)	0.540
Cloverdale	0.560
Haney	0.491

Province and LocationSalceLadner0.642Langley0.541New Westminster0.561North Vancouver0.558Richmond0.616Surrey (88 Ave & 1560.552Vancouver (City Hall)0.592Vancouver (City Hall)0.592Vancouver (City Hall)0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria (Mt Tolmie)0.853Victoria Alberta0.601Whitsler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.058
New Westminster0.561North Vancouver0.558Richmond0.616Surrey (88 Ave & 1560.552Vancouver (City Hall)0.592Vancouver (City Hall)0.592Vancouver (City Hall)0.601West Vancouver0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
New Westminster0.561North Vancouver0.558Richmond0.616Surrey (88 Ave & 1560.552Vancouver (City Hall)0.592Vancouver (City Hall)0.592Vancouver (City Hall)0.601West Vancouver0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
North Vancouver0.558Richmond0.616Surrey (88 Ave & 1560.552Vancouver (City Hall)0.592Vancouver (City Hall)0.592Vancouver (City Hall)0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Richmond0.616Surrey (88 Ave & 1560.552Vancouver (City Hall)0.592Vancouver (City Hall)0.601West Vancouver0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Surrey (88 Ave & 156 St.)0.552 0.552Vancouver (City Hall)0.592Vancouver (City Hall)0.592Vancouver (City Hall)0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria (Mt Tolmie)0.853Victoria0.601Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
SL)Provide the second seco
(Granville & 41 Ave)0.601West Vancouver0.572Vernon0.108Victoria Region0.861Victoria (Mt Tolmie)0.853Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Vernon0.108Victoria RegionVictoria (Gonzales Hts)0.861Victoria (Mt Tolmie)0.853Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Victoria RegionVictoria (Gonzales Hts)0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Victoria (Gonzales Hts)0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
(Gonzales Hts)0.861Victoria (Mt Tolmie)0.853Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Victoria0.868Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Whistler0.315White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Athabasca0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
White Rock0.601Williams Lake0.110Youbou0.846Alberta0.043Athabasca0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Williams Lake0.110Youbou0.846Alberta0.043Athabasca0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Youbou 0.846 Alberta Athabasca 0.043 Banff 0.178 Barrhead 0.064 Beaverlodge 0.102 Brooks 0.076 Calgary 0.126 Campsie 0.067
Alberta Athabasca 0.043 Banff 0.178 Barrhead 0.064 Beaverlodge 0.102 Brooks 0.076 Calgary 0.126 Campsie 0.067
Athabasca0.043Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Banff0.178Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Barrhead0.064Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Beaverlodge0.102Brooks0.076Calgary0.126Campsie0.067
Brooks 0.076 Calgary 0.126 Campsie 0.067
Calgary 0.126 Campsie 0.067
Campsie 0.067
$C \land C \subset C \land$
Camrose 0.058
Canmore 0.177
Cardston 0.196
Claresholm 0.147
Cold Lake 0.034
Coleman 0.189
Coronation 0.048
Cowley 0.191
Drumheller 0.077
Edmonton 0.062
Edson 0.111
Embarras Portage 0.031
Fairview 0.071
Fort MacLeod 0.158
Fort McMurray 0.034
Fort Saskatchewan 0.053
Fort Vermilion 0.036
Grande Prairie 0.093

r waiis, S _{a,ICF}	
Province and Location	S _{a,ICF}
Hardisty	0.043
High River	0.134
Hinton	0.175
Jasper	0.183
Alberta	
Keg River	0.042
Lac la Biche	0.038
Lacombe	0.081
Lethbridge	0.125
Manning	0.049
Medicine Hat	0.060
Peace River	0.058
Pincher Creek	0.195
Ranfurly	0.042
Red Deer	0.085
Rocky Mountain House	0.116
Slave Lake	0.047
Stettler	0.066
Stony Plain	0.069
Suffield	0.068
Taber	0.101
Turner Valley	0.160
Valleyview	0.078
Vegreville	0.044
Vermilion	0.038
Wagner	0.048
Wainwright	0.040
Wetaskiwin	0.069
Whitecourt	0.079
Wimborne	0.087
Saskatchewan	
Assiniboia	0.076
Battrum	0.042
Biggar	0.037
Broadview	0.048
Dafoe	0.040
Dundurn	0.039
Estevan	0.073
Hudson Bay	0.034
Humboldt	0.037
Island Falls	0.031
Kamsack	0.037
Kindersley	0.039
Lloydminster	0.036
Maple Creek	0.048
Meadow Lake	0.034
Melfort	0.035
	0.000

Province and Location	S _{a,ICF}
Melville	0.044
Moose Jaw	0.058
Nipawin	0.034
North Battleford	0.036
Prince Albert	0.034
Qu'Appelle	0.054
Regina	0.060
Rosetown	0.038
Saskatoon	0.037
Scott	0.037
Strasbourg	0.046
Swift Current	0.045
Uranium City	0.032
Weyburn	0.105
Yorkton	0.040
Manitoba	0.010
Beausejour	0.033
Boissevain	0.037
Brandon	0.031
Churchill	0.032
Dauphin	0.035
Flin Flon	0.032
Gimli	0.032
Island Lake	0.033
Lac du Bonnet	0.033
Lynn Lake	0.032
Morden	0.031
Neepawa	0.031
Pine Falls	0.033
Portage la Prairie	0.032
Rivers	0.037
Sandilands	0.032
Selkirk	0.032
Split Lake	0.032
Steinbach	0.032
Swan River	0.035
The Pas	0.032
Thompson	0.032
Virden	0.041
Winnipeg	0.032
Ontario	
Ailsa Craig	0.064
Ajax	0.117
Alexandria	0.267
Alliston	0.076
Almonte	0.173
Armstrong	0.037
Arnprior	0.186
, inprior	0.100

Province and Location	e
Atikokan	S_{a,ICF} 0.039
Attawapiskat	0.039
	0.043
Aurora Bancroft	0.007
Barrie	0.105
Barriefield	0.077
Beaverton	0.110
Belleville	0.002
Belmont	0.105
Kitchenuhmay-koosib	0.073
(Big Trout Lake) CFB Borden	0.075
Bracebridge	0.084
Bradford	0.081
Brampton	0.096
Brantford	0.089
Brighton	0.106
Brockville	0.151
Blockville Burk's Falls	0.096
Burlington	0.143
Cambridge	0.084
Campbellford	0.084
	0.097
Cannington	
Carleton Place	0.164
Cavan	0.092
Centralia	0.064
Chapleau Chatham	0.050
	0.070
Clinton	0.062
Coboconk	
Cobourg	0.106
Cochrane Colborne	0.122
	0.106
Collingwood	
Cornwall	0.266
Corunna	0.060
Deep River	0.192
Deseronto	0.106
Dorchester	0.072
Dorion	0.035
Dresden	0.067
Dryden	0.040
Dundalk	0.069
Dunnville	0.127
Durham	0.065
Dutton	0.072
Earlton	0.108
Edison	0.039

	_	
Province and Location	S _{a,ICF}	
Elliot Lake	0.054	
Elmvale	0.074	
Embro	0.072	
Englehart	0.104	
Espanola	0.063	
Exeter	0.063	
Fenelon Falls	0.086	
Fergus	0.075	
Forest	0.061	
Fort Erie	0.162	
Fort Erie (Ridgeway)	0.160	
Fort Frances	0.036	
Gananoque	0.119	
Geraldton	0.036	
Glencoe	0.068	
Goderich	0.059	
Gore Bay	0.055	
Graham	0.040	
Gravenhurst (Muskoka Airport)	0.082	
Grimsby	0.158	
Guelph	0.082	
Guthrie	0.078	
Haileybury	0.125	
Haldimand (Caledonia)	0.119	
Haldimand (Hagersville)	0.097	
Haliburton	0.095	
Halton Hills (Georgetown)	0.090	
Hamilton / C C	0.140	
Hanover	0.063	
Hastings	0.096	
Hawkesbury	0.238	
Hearst	0.048	
Honey Harbour	0.076	
Hornepayne	0.043	
Huntsville	0.091	
Ingersoll	0.073	
Iroquois Falls	0.110	
Jellicoe	0.035	
Kapuskasing	0.064	
Kemptville	0.209	
Kenora	0.036	
Killaloe	0.148	
Kincardine	0.058	
Kingston	0.038	
Kingston	0.089	
Kirkland Lake	0.089	
	0.095	
Kitchener	0.077	

Province and Location	S _{a,ICF}
Lakefield	0.091
Lansdowne House	0.035
Leamington	0.070
Lindsay	0.087
Lion's Head	0.062
Listowel	0.066
London	0.070
Lucan	0.065
Maitland	0.159
Markdale	0.066
Markham	0.103
Martin	0.040
Matheson	0.091
Mattawa	0.215
Midland	0.075
Milton	0.107
Milverton	0.067
Minden	0.089
Mississauga	0.121
Mississauga (Lester B.	
Pearson Int'l Airport)	0.109
Mississauga (Port Credit)	0.134
Mitchell	0.065
Moosonee	0.051
Morrisburg	0.256
Mount Forest	0.067
Nakina	0.036
Nanticoke (Jarvis)	0.090
Nanticoke (Port Dover)	0.085
Napanee	0.106
New Liskeard	0.121
Newcastle	0.107
Newcastle (Bowmanville)	0.107
Newmarket	0.085
Niagara Falls	0.166
North Bay	0.141
Norwood	0.094
Oakville	0.140
Orangeville	0.076
Orillia	0.079
Oshawa	0.108
Ottawa (City Hall)	0.213
Ottawa (Barrhaven)	0.208
Ottawa (Kanata)	0.197
Ottawa (Rahata) Ottawa (M-C Int'l Airport)	0.215
	0.006
Ottawa (Orleans)	0.226
Owen Sound	0.064

Province and Location	S _{a.ICF}
Pagwa River	0.040
Paris	0.084
Parkhill	0.063
Parry Sound	0.079
Pelham (Fonthill)	0.162
Pembroke	0.189
Penetanguishene	0.074
Perth	0.140
Petawawa	0.189
Peterborough	0.092
Petrolia	0.062
Pickering (Dunbarton)	0.121
Picton	0.104
Plattsville	0.075
Point Alexander	0.193
Port Burwell	0.079
Port Colborne	0.157
Port Elgin	0.060
Port Hope	0.106
Port Perry	0.091
Port Stanley	0.075
Prescott	0.178
Princeton	0.079
Raith	0.038
Rayside-Balfour (Chelmsford)	0.072
Red Lake	0.038
Renfrew	0.179
Richmond Hill	0.095
Rockland	0.239
Sarnia	0.059
Sault Ste. Marie	0.044
Schreiber	0.035
Seaforth	0.062
Shelburne	0.072
Simcoe	0.084
Sioux Lookout	0.041
Smiths Falls	0.151
Smithville	0.156
Smooth Rock Falls	0.112
South River	0.106
Southampton	0.060
St. Catharines	0.165
St. Mary's	0.068
St. Thomas	0.073
Stirling	0.100
Stratford	0.069
Strathroy	0.066
Sturgeon Falls	0.113

Description and Leasting	0
Province and Location	S _{a,ICF}
Sudbury	0.076
Sundridge	0.103
Tavistock	0.071
Temagami	0.135
Thamesford	0.071
Thedford	0.062
Thunder Bay	0.035
Tillsonburg	0.077
Timmins	0.075
Timmins (Porcupine)	0.081
Etobicoke	0.109
North York	0.110
Scarborough	0.121
Toronto (City Hall)	0.135
Trenton	0.105
Trout Creek	0.116
Uxbridge	0.089
Vaughan (Woodbridge)	0.096
Vittoria	0.083
Walkerton	0.062
Wallaceburg	0.064
Waterloo	0.075
Watford	0.064
Wawa	0.043
Welland	0.161
West Lorne	0.072
Whitby	0.114
Whitby (Brooklin)	0.102
White River	0.041
Wiarton	0.062
Windsor	0.063
Wingham	0.061
Woodstock	0.075
Wyoming	0.061
Quebec	F
Acton-Vale	0.155
Alma	0.356
Amos	0.078
Asbestos	0.137
Aylmer	0.203
Baie-Comeau	0.207
Baie-Saint-Paul	0.735
Beauport	0.239
Bedford	0.185
Beloeil	0.244
Brome	0.149
Brossard	0.266
Buckingham	0.232

Duration and Location	•	
Province and Location	S _{a,ICF}	
Campbell's Bay	0.192	
Chambly	0.254	
Coaticook	0.129	
Contrecoeur	0.226	
Cowansville	0.161	
Deux-Montagnes	0.270	
Dolbeau	0.230	
Drummondville	0.160	
Farnham	0.187	
Fort-Coulonge	0.193	
Gagnon	0.060	
Gaspe	0.090	
Gatineau	0.214	
Gracefield	0.207	
Granby	0.161	
Harrington-Harbour	0.056	
Havre-St-Pierre	0.127	
Hemmingford	0.253	
Hull	0.210	
Iberville	0.243	
Inukjuak	0.040	
Joliette	0.219	
Kuujjuaq	0.054	
Kuujjuarapik	0.035	
La Pocatiere	0.685	
La-Malbaie	0.785	
La-Tuque	0.137	
Lac-Megantic	0.130	
Lachute	0.242	
Lennoxville	0.129	
Lery	0.273	
Loretteville	0.236	
Louiseville	0.184	
Magog	0.133	
Malartic	0.092	
Maniwaki	0.208	
Masson	0.235	
Matane	0.218	
Mont-Joli	0.208	
Mont-Laurier	0.204	
Montmagny	0.278	
Montreal Region		
Beaconsfield	0.273	
Dorval	0.272	
Laval	0.270	
Montreal (City Hall)	0.270	
Montreal-Est	0.266	
Montreal-Nord	0.269	
		1

Dravings and Leasting	
Province and Location	S _{a,ICF}
Outremont	0.271
Pierrefonds	0.272
St-Lambert	0.268
St-Laurent	0.271
Ste-Anne-de-Bellevue	0.273
Verdun	0.270
Nicolet (Gentilly)	0.183
Nitchequon	0.047
Noranda	0.088
Perce	0.084
Pincourt	0.273
Plessisville	0.155
Port-Cartier	0.167
Puvirnituq	0.061
Quebec City Region	
Ancienne-Lorette	0.231
Levis	0.233
Quebec	0.233
Sillery	0.230
Ste-Foy	0.231
Richmond	0.140
Rimouski	0.200
Riviere-du-Loup	0.526
Roberval	0.312
Rock-Island	0.133
Rosemere	0.268
Rouyn	0.089
Saguenay	0.359
Saguenay (Bagotville)	0.363
Saguenay (Jonquiere)	0.362
Saguenay (Kenogami)	0.362
Saint-Eustache	0.269
Saint-Jean-sur-	0.200
Richelieu	0.244
Salaberry-de-Valleyfield	0.273
Schefferville	0.042
Senneterre	0.083
Sept-Iles	0.155
Shawinigan	0.167
Shawville	0.191
Sherbrooke	0.129
Sorel	0.200
St-Felicien	0.232
St-Georges-de- Cacouna	0.389
St-Hubert	0.264
Saint-Hubert-de- Riviere-du-Loup	0.239
St-Hyacinthe	0.187

Province and Location	S _{a,ICF}	Province and L
St-JerOme	0.250	Halifax
St-Jovite	0.207	Kentville
Quebec		Liverpool
St-Lazare-Hudson	0.271	Lockeport
St-Nicolas	0.223	Louisburg
Ste-Agathe-des-Monts	0.209	Lunenburg
Sutton	0.150	New Glasgow
Tadoussac	0.318	North Sydney
Temiscaming	0.372	Pictou
Terrebonne	0.265	Port Hawkesbu
Thetford Mines	0.142	Springhill
Thurso	0.232	Stewiacke
Trois-Rivieres	0.184	Sydney
Val-d'Or	0.093	Tatamagouche
Varennes	0.261	Truro
Vercheres	0.249	Wolfville
Victoriaville	0.149	Yarmouth
Ville-Marie	0.142	Prince Edward I
Wakefield	0.201	Charlottetown
Waterloo	0.147	Souris
Windsor	0.134	Summerside
New Brunswick		Tignish
Alma	0.096	Newfoundland
Bathurst	0.125	Argentia
Campbellton	0.132	Bonavista
Edmundston	0.150	Buchans
Fredericton	0.126	Cape Harrison
Gagetown	0.119	Cape Race
Grand Falls	0.148	Channel-Port a
Miramichi	0.124	Basques
Moncton	0.100	Corner Brook
Oromocto	0.125	Gander
Sackville	0.093	Grand Bank
Saint Andrews	0.396	Grand Falls
Saint George	0.264	Happy Valley - (Bay
Saint John	0.121	Labrador City
Shippagan	0.096	St. Anthony
St. Stephen	0.354	St. John's
Woodstock	0.128	Stephenville
Nova Scotia		Twin Falls
Amherst	0.089	Wabana
Antigonish	0.076	Wabush
Bridgewater	0.086	
Canso	0.085	
Debert	0.080	
Digby	0.105	
Greenwood (CFB)	0.090	
Dartmouth	0.082	
		•

	- a,ICF
lalifax	0.082
Centville	0.087
iverpool	0.086
ockeport	0.087
ouisburg	0.089
unenburg	0.085
lew Glasgow	0.077
lorth Sydney	0.081
Pictou	0.076
Port Hawkesbury	0.079
Springhill	0.085
Stewiacke	0.081
Sydney	0.083
atamagouche	0.079
ruro	0.080
Volfville	0.086
armouth	0.094
rince Edward Island	
Charlottetown	0.077
Souris	0.073
Summerside	0.089
ïgnish	0.090
lewfoundland	
vrgentia	0.079
Bonavista	0.067
Buchans	0.064
Cape Harrison	0.087
Cape Race	0.085
Channel-Port aux Basques	0.071
Corner Brook	0.062
ander	0.064
arand Bank	0.090
arand Falls	0.064
łappy Valley - Goose Bay	0.050
abrador City	0.052
St. Anthony	0.057
St. John's	0.073
Stephenville	0.064
win Falls	0.047
Vabana	0.072
Vabush	0.052

ocation

S_{a.ICF}

NCRETE FORMS RS ASSOCIATION ICF-MA.ORG

This page left intentionally blank.

Appendix B: Climatic Design Data

			Des Jani	sign Te uarv	mpera July		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,			/ Wind res, kPa	
Province and Lc	ocation	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50	•
British Columbia																		1
100 Mile Hous	e	1040	-30	-32	29	17	5030	10	48	300	0.44	425	60	2.6	0.3	0.27	0.35	
Abbotsford		70	-8	-10	29	20	2860	12	112	1525	1.59	1600	160	2.0	0.3	0.34	0.44	
Agassiz		15	-9	-11	31	21	2750	8	128	1650	1.71	1700	160	2.4	0.7	0.36	0.47	
Alberni		12	-5	-8	31	19	3100	10	144	1900	2.00	2000	220	2.6	0.4	0.25	0.32	
Ashcroft		305	-24	-27	34	20	3700	10	37	250	0.25	300	80	1.7	0.1	0.29	0.38	
Bamfield		20	-2	-4	23	17	3080	13	170	2870	2.96	2890	280	1.0	0.4	0.39	0.50	1
Beatton River		840	-37	-39	26	18	6300	15	64	330	0.53	450	80	3.3	0.1	0.23	0.30	
Bella Bella		25	-5	-7	23	18	3180	13	145	2715	2.82	2800	350	2.6	0.8	0.39	0.50	
Bella Coola		40	-14	-18	27	19	3560	10	140	1500	1.85	1700	350	4.5	0.8	0.30	0.39	
Burns Lake		755	-31	-34	26	17	5450	12	54	300	0.56	450	100	3.4	0.2	0.30	0.39	
Cache Creek		455	-24	- 27	34	20	3700	10	37	250	0.25	300	80	1.7	0.2	0.30	0.39	
Campbell Rive	r	20	-5	-7	26	18	3000	10	116	1500	1.59	1600	260	2.8	0.4	0.40	0.52	
Carmi		845	-24	-26	31	19	4750	10	64	325	0.38	550	60	3.6	0.2	0.29	0.38	
Castlegar		430	-18	-20	32	20	3580	10	54	560	0.64	700	60	4.2	0.1	0.27	0.34	
Chetwynd		605	-35	-38	27	18	5500	15	70	400	0.58	625	60	2.4	0.2	0.31	0.40	
Chilliwack		10	-9	-11	30	20	2780	8	139	1625	1.68	1700	160	2.2	0.3	0.36	0.47	
Comox		15	-7	-9	27	18	3100	10	106	1175	1.28	1200	260	2.4	0.4	0.40	0.52	
Courtenay		10	-7	-9	28	18	3100	10	106	1400	1.49	1450	260	2.4	0.4	0.40	0.52	
Cranbrook		910	-26	-28	32	18	4400	12	59	275	0.30	400	100	3.0	0.2	0.25	0.33	
Crescent Valle	y	585	-18	-20	31	20	3650	10	54	675	0.75	850	80	4.2	0.1	0.25	0.33	
Crofton		5	-4	-6	28	19	2880	8	86	925	1.06	950	160	1.8	0.2	0.31	0.40	
Dawson Creek		665	-38	-40	27	18	5900	18	75	325	0.49	475	100	2.5	0.2	0.31	0.40	I
Dease Lake		800	-37	-40	24	15	6730	10	45	265	0.55	425	380	2.8	0.1	0.23	0.30	L
Dog Creek		450	-28	-30	29	17	4800	10	48	275	0.41	375	100	1.8	0.2	0.27	0.35	
Duncan		10	-6	-8	28	19	2980	8	103	1000	1.13	1050	180	1.8	0.4	0.30	0.39	
Elko		1065	-28	-31	30	19	4600	13	64	440	0.48	650	100	3.6	0.2	0.31	0.40	1
Fernie		1010	-27	-30	30	19	4750	13	118	860	0.88	1175	100	4.5	0.2	0.31	0.40	
Fort Nelson		465	-39	-42	28	18	6710	15	70	325	0.56	450	80	2.4	0.1	0.23	0.30	
Fort St. John		685	-35	-37	26	18	5750	15	72	320	0.50	475	100	2.8	0.1	0.30	0.39	
Glacier		1145	-27	-30	27	17	5800	10	70	625	0.83	1500	80	9.4	0.2	0.25	0.32	
Gold River		120	-8	-11	31	18	3230	13	200	2730	2.80	2850	250	2.8	0.6	0.25	0.32	1
Golden		790	-27	-30	30	17	4750	10	55	325	0.57	500	100	3.7	0.2	0.27	0.35	
Grand Forks		565	-19	-22	34	20	3820	10	48	390	0.47	475	80	2.8	0.1	0.31	0.40	
Greenwood		745	-20	-23	34	20	4100	10	64	430	0.51	550	80	3.6	0.1	0.31	0.40	
Норе		40	-13	-15	31	20	3000	8	139	1825	1.88	1900	140	2.8	0.7	0.48	0.63	
Jordan River		20	-1	-3	22	17	2900	12	170	2300	2.37	2370	250	1.2	0.4	0.43	0.55	1
Kamloops		355	-23	-25	34	20	3450	13	42	225	0.23	275	80	1.8	0.2	0.31	0.40	
Kaslo		545	-17	-20	30	19	3830	10	55	660	0.82	850	80	2.8	0.1	0.24	0.31	

		-		mpera		De-	15	One	A		Ann.	Driv- ing Rain	Snow kPa	Load, 1/50		/ Wind res, kPa	
Province and Location	Elev.,	Janı	uary	July	∠.5% 	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Tot.	Wind	, na	1,00	1 103301	00, ri a	-
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	Sr	1/10	1/50	
Kelowna	350	-17	-20	33	20	3400	12	43	260	0.29	325	80	1.7	0.1	0.31	0.40	
Kimberley	1090	-25	-27	31	18	4650	12	59	350	0.38	500	100	3.0	0.2	0.25	0.33	
Kitimat Plant	15	-16	-18	25	16	3750	13	193	2100	2.19	2500	220	5.5	0.8	0.37	0.48	1
Kitimat Townsite	130	-16	-18	24	16	3900	13	171	1900	2.00	2300	220	6.5	0.8	0.37	0.48	
Ladysmith	80	-7	-9	27	19	3000	8	97	1075	1.20	1160	180	2.4	0.4	0.31	0.40	
Langford	80	-4	-6	27	19	2750	9	135	1095	1.22	1125	220	1.8	0.3	0.31	0.40	
Lillooet	245	-21	-23	34	20	3400	10	70	300	0.31	350	100	2.1	0.1	0.34	0.44	
Lytton	325	-17	-20	35	20	3300	10	70	330	0.33	425	80	2.8	0.3	0.33	0.43	1
Mackenzie	765	-34	-38	27	17	5550	10	50	350	0.54	650	60	5.1	0.2	0.25	0.32	
Masset	10	-5	-7	17	15	3700	13	80	1350	1.54	1400	400	1.8	0.4	0.48	0.61	
McBride	730	-29	-32	29	18	4980	13	54	475	0.64	650	60	4.3	0.2	0.27	0.35	
McLeod Lake	695	-35	-37	27	17	5450	10	50	350	0.54	650	60	4.1	0.2	0.25	0.32	
Merritt	570	-24	-27	34	20	3900	8	54	240	0.24	310	80	1.8	0.3	0.34	0.44	1
Mission City	45	-9	-11	30	20	2850	13	123	1650	1.71	1700	160	2.4	0.3	0.33	0.43	
Montrose	615	-16	-18	32	20	3600	10	54	480	0.56	700	60	4.1	0.1	0.27	0.35	
Nakusp	445	-20	-22	31	20	3560	10	60	650	0.78	850	60	4.4	0.1	0.25	0.33	
Nanaimo	15	-6	-8	27	19	3000	10	91	1000	1.13	1050	200	2.1	0.4	0.39	0.50	
Nelson	600	-18	-20	31	20	3500	10	59	460	0.57	700	60	4.2	0.1	0.25	0.33	
Ocean Falls	10	-10	-12	23	17	3400	13	260	4150	4.21	4300	350	3.9	0.8	0.46	0.59	
Osoyoos	285	-14	-17	35	21	3100	10	48	275	0.28	310	60	1.1	0.1	0.31	0.40	
Parksville	40	-6	-8	26	19	3200	10	91	1200	1.31	1250	200	2.0	0.4	0.39	0.50	
Penticton	350	-15	-17	33	20	3350	10	48	275	0.28	300	60	1.3	0.1	0.35	0.45	
Port Alberni	15	-5	-8	31	19	3100	10	161	1900	2.00	2000	240	2.6	0.4	0.25	0.32	h
Port Alice	25	-3	-6	26	17	3010	13	200	3300	3.38	3340	220	1.1	0.4	0.25	0.32	L
Port Hardy	5	-5	-7	20	16	3440	13	150	1775	1.92	1850	220	0.9	0.4	0.40	0.52	
Port McNeill	5	-5	-7	22	17	3410	13	128	1750	1.89	1850	260	1.1	0.4	0.40	0.52	
Port Renfrew	20	-3	-5	24	17	2900	13	200	3600	3.64	3675	270	1.1	0.4	0.40	0.52	
Powell River	10	-7	-9	26	18	3100	10	80	1150	1.27	1200	220	1.7	0.4	0.39	0.51	1
Prince George	580	-32	-36	28	18	4720	15	54	425	0.58	600	80	3.4	0.2	0.29	0.37	
Prince Rupert	20	-13	-15	19	15	3900	13	160	2750	2.84	2900	240	1.9	0.4	0.42	0.54	
Princeton	655	-24	-29	33	19	4250	10	43	235	0.35	350	80	2.9	0.6	0.28	0.36	
Qualicum Beach	10	-7	-9	27	19	3200	10	96	1200	1.31	1250	200	2.0	0.4	0.41	0.53	
Queen Charlotte City	35	-6	-8	21	16	3520	13	110	1300	1.47	1350	360	1.8	0.4	0.48	0.61]
Quesnel	475	-31	-33	30	17	4650	10	50	380	0.51	525	80	3.0	0.1	0.24	0.31	1
Revelstoke	440	-20	-23	31	19	4000	13	55	625	0.80	950	80	7.2	0.1	0.25	0.32	1
Salmon Arm	425	-19	- 24	33	21	3650	13	48	400	0.47	525	80	3.5	0.1	0.30	0.39	1
Sandspit	5	-4	-6	18	15	3450	13	86	1300	1.47	1350	500	1.8	0.4	0.60	0.78	1
Sechelt	25	-6	-8	27	20	2680	10	75	1140	1.27	1200	160	1.8	0.4	0.37	0.48	1
Sidney	10	-4	-6	26	18	2850	8	96	825	0.97	850	160	1.1	0.2	0.33	0.42	
Smith River	660	-45	-47	26	17	7100	10	64	300	0.58	500	40	2.8	0.1	0.23	0.30	1

			sign Te	r ·		De-	15	One			Ann.	Driv- ing Rain	Snow		Hourly		
Province and Location	Elev.,	Jan	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	кга,	1/50	riessu	res, kPa	-
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	S _r	1/10	1/50	
Smithers	500	-29	-31	26	17	5040	13	60	325	0.60	500	120	3.5	0.2	0.31	0.40	
Sooke	20	-1	-3	21	16	2900	9	130	1250	1.37	1280	220	1.3	0.3	0.37	0.48	
Squamish	5	-9	-11	29	20	2950	10	140	2050	2.12	2200	160	2.8	0.7	0.39	0.50	
Stewart	10	-17	-20	25	16	4350	13	135	1300	1.47	1900	180	7.9	0.8	0.28	0.36	
Tahsis	25	-4	-6	26	18	3150	13	200	3845	3.91	3900	300	1.1	0.4	0.26	0.34	
Taylor	515	-35	-37	26	18	5720	15	72	320	0.49	450	100	2.3	0.1	0.31	0.40	
Terrace	60	-19	-21	27	17	4150	13	120	950	1.08	1150	200	5.4	0.6	0.28	0.36	
Tofino	10	-2	-4	20	16	3150	13	193	3275	3.36	3300	300	1.1	0.4	0.53	0.68	
Trail	440	-14	-17	33	20	3600	10	54	580	0.65	700	60	4.1	0.1	0.27	0.35	
Ucluelet	5	-2	-4	18	16	3120	13	180	3175	3.26	3200	280	1.0	0.4	0.53	0.68	
Vancouver Region																	
Burnaby (Simon Fraser Univ.)	330	-7	-9	25	17	3100	10	150	1850	1.93	1950	160	2.9	0.7	0.36	0.47	
Cloverdale	10	-8	-10	29	20	2700	10	112	1350	1.44	1400	160	2.5	0.2	0.34	0.44	
Haney	10	-9	-11	30	20	2840	10	134	1800	1.86	1950	160	2.4	0.2	0.34	0.44	
Ladner	3	-6	-8	27	19	2600	10	80	1000	1.14	1050	160	1.3	0.2	0.36	0.46	
Langley	15	-8	-10	29	20	2700	10	112	1450	1.53	1500	160	2.4	0.2	0.34	0.44	
New Westminster	10	-8	-10	29	19	2800	10	134	1500	1.59	1575	160	2.3	0.2	0.34	0.44	
North Vancouver	135	-7	-9	26	19	2910	12	150	2000	2.07	2100	160	3.0	0.3	0.35	0.45	
Richmond	5	-7	-9	27	19	2800	10	86	1070	1.20	1100	160	1.5	0.2	0.35	0.45	
Surrey (88 Ave & 156 St.)	90	-8	-10	29	20	2750	10	128	1500	1.58	1575	160	2.4	0.3	0.34	0.44	
Vancouver (City Hall)	40	-7	-9	28	20	2825	10	112	1325	1 <u>.</u> 44	1400	160	1.8	0.2	0.35	0.45	N
Vancouver (Granville & 41 Ave)	120	-6	-8	28	20	2925	10	107	1325	1.44	1400	160	1.9	0.3	0.35	0.45	
West Vancouver	45	-7	-9	28	19	2950	12	150	1600	1.69	1700	160	2.4	0.2	0.37	0.48	(
Vernon	405	-20	-23	33	20	3600	13	43	350	0.41	400	80	2.2	0.1	0.31	0.40	
Victoria Region																	
Victoria (Gonzales Hts)	65	-4	-6	24	17	2700	9	91	600	0.82	625	220	1.5	0.3	0.44	0.57	
Victoria (Mt Tolmie)	125	-6	-8	24	16	2700	9	91	775	0.96	800	220	2.1	0.3	0.48	0.63	
Victoria	10	-4	-6	24	17	2650	8	91	800	0.98	825	220	1.1	0.2	0.44	0.57	
Whistler	665	-17	-20	30	20	4180	10	85	845	0.99	1215	160	9.5	0.9	0.25	0.32	_
White Rock	30	-5	-7	25	20	2620	10	80	1065	1.17	1100	160	2.0	0.2	0.34	0.44	
Williams Lake	615	-30	-33	29	17	4400	10	48	350	0.47	425	80	2.4	0.2	0.27	0.35	
Youbou	200	-5	-8	31	19	3050	10	161	2000	2.09	2100	200	3.5	0.7	0.25	0.32	_
Alberta																	
Athabasca	515	-35	-38	27	19	6000	18	86	370	0.58	480	80	1.5	0.1	0.28	0.36	
Banff	1400	-31	-33	27	16	5500	18	65	300	0.58	500	120	3.3	0.1	0.25	0.32	1
Barrhead	645	-33	-36	27	19	5740	20	86	375	0.58	475	100	1.7	0.1	0.34	0.44	

		Des Jani	•	mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain		Load, 1/50		v Wind res, kPa
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	₩et °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	S _r	1/10	1/50
Beaverlodge	730	-36	-39	28	18	5700	20	86	315	0.49	470	100	2.4	0.1	0.28	0.36
Brooks	760	-32	-34	32	20	4880	18	86	260	0.26	340	220	1.2	0.1	0.40	0.52
Calgary	1045	-30	-32	28	17	5000	23	103	325	0.37	425	220	1.1	0.1	0.37	0.48
Campsie	660	-33	-36	27	19	5750	20	86	375	0.58	475	100	1.7	0.1	0.34	0.44
Camrose	740	-33	-35	29	19	5500	20	86	355	0.54	470	160	2.0	0.1	0.30	0.39
Canmore	1320	-31	-33	28	17	5400	18	86	325	0.57	500	120	3.2	0.1	0.29	0.37
Cardston	1130	-29	-32	30	19	4700	20	108	340	0.38	550	140	1.5	0.1	0.56	0.72
Claresholm	1030	-30	-32	30	18	4680	15	97	310	0.35	440	200	1.3	0.1	0.45	0.58
Cold Lake	540	-35	-38	28	19	5860	18	81	320	0.53	430	140	1.7	0.1	0.29	0.38
Coleman	1320	-31	-34	29	18	5210	15	86	400	0.46	550	120	2.7	0.3	0.48	0.63
Coronation	790	-32	-34	30	19	5640	20	92	300	0.45	400	200	1.9	0.1	0.29	0.37
Cowley	1175	-29	-32	29	18	4810	15	92	310	0.36	525	140	1.6	0.1	0.78	1.01
Drumheller	685	-32	-34	30	18	5050	20	86	300	0.39	375	220	1.2	0.1	0.34	0.44
Edmonton	645	-30	-33	28	19	5120	23	97	360	0.48	460	160	1.7	0.1	0.35	0.45
Edson	920	-34	-37	27	18	5750	18	81	450	0.63	570	100	2.1	0.1	0.36	0.46
Embarras Portage	220	-41	-43	28	19	7100	12	81	250	0.56	390	80	2.2	0.1	0.29	0.37
Fairview	670	-37	-40	27	18	5840	15	86	330	0.51	450	100	2.4	0.1	0.27	0.35
Fort MacLeod	945	-30	-32	31	19	4600	16	97	300	0.35	425	180	1.2	0.1	0.53	0.68
Fort McMurray	255	-38	-40	28	19	6250	13	86	340	0.52	460	60	1.5	0.1	0.27	0.35
Fort Saskatchewan	610	-32	-35	28	19	5420	20	86	350	0.49	425	140	1.6	0.1	0.33	0.43
Fort Vermilion	270	-41	-43	28	18	6700	13	70	250	0.53	380	60	2.1	0.1	0.23	0.30
Grande Prairie	650	-36	-39	27	18	5790	20	86	315	0.49	450	120	2.2	0.1	0.33	0.43
Habay	335	-41	-43	28	18	6750	13	70	275	0.54	425	60	2.4	0.1	0.23	0.30
Hardisty	615	-33	-36	30	19	5640	20	81	325	0.48	425	140	1.7	0.1	0.28	0.36
High River	1040	-31	-32	28	17	4900	18	97	300	0.36	425	200	1.3	0.1	0.50	0.65
Hinton	990	-34	-38	27	17	5500	13	81	375	0.55	500	100	2.6	0.1	0.36	0.46
Jasper	1060	-31	-34	28	17	5300	12	76	300	0.52	400	80	3.0	0.1	0.25	0.32
Keg River	420	-40	-42	28	18	6520	13	70	310	0.54	450	80	2.4	0.1	0.23	0.30
Lac la Biche	560	-35	-38	28	19	6100	15	86	375	0.58	475	80	1.6	0.1	0.28	0.36
Lacombe	855	-33	-36	28	19	5500	23	92	350	0.53	450	180	1.9	0.1	0.31	0.40
Lethbridge	910	-30	-32	31	19	4500	20	97	250	0.26	390	200	1.2	0.1	0.51	0.66
Manning	465	-39	-41	27	18	6300	13	76	280	0.49	390	80	2.3	0.1	0.23	0.30
Medicine Hat	705	-31	-34	32	19	4540	23	92	250	0.25	325	220	1.1	0.1	0.37	0.48
Peace River	330	-37	-40	27	18	6050	15	81	300	0.50	390	100	2.2	0.1	0.25	0.32
Pincher Creek	1130	-29	-32	29	18	4740	16	103	325	0.37	575	140	1.5	0.1	0.75	0.96
Ranfurly	670	-34	-37	29	19	5700	18	92	325	0.50	420	100	1.9	0.1	0.28	0.36
Red Deer	855	-32	-35	28	19	5550	20	97	375	0.54	475	200	1.8	0.1	0.31	0.40
Rocky Mountain House	985	-32	-34	27	18	5640	20	92	425	0.59	550	120	1.9	0.1	0.28	0.36
Slave Lake	590	-35	-38	26	19	5850	15	81	380	0.62	500	80	1.9	0.1	0.29	0.37
Stettler	820	-32	-34	30	19	5300	20	97	370	0.53	450	200	1.9	0.1	0.28	0.36

			sign Te	<u> </u>		De-	15	One	۰.		Ann.	Driv- ing Rain	Snow kPa,			v Wind res, kPa]
Province and Location	Elev.,	Jan	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	κι α,	1/30	1103301	C3, KI 4	-
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	Sr	1/10	1/50	
Stony Plain	710	-32	-35	28	19	5300	23	97	410	0.52	540	120	1.7	0.1	0.35	0.45	1
Suffield	755	-31	-34	32	20	4770	20	86	230	0.23	325	220	1.3	0.1	0.38	0.49	
Taber	815	-31	-33	31	19	4580	20	92	260	0.26	370	200	1.2	0.1	0.48	0.63	
Turner Valley	1215	-31	-32	28	17	5220	20	97	350	0.48	600	180	1.4	0.1	0.50	0.65	
Valleyview	700	-37	-40	27	18	5600	18	86	360	0.54	490	80	2.3	0.1	0.33	0.42	
Vegreville	635	-34	-37	29	19	5780	18	86	325	0.50	410	100	1.9	0.1	0.28	0.36	
Vermilion	580	-35	-38	29	19	5740	18	86	310	0.53	410	100	1.7	0.1	0.28	0.36	
Wagner	585	-35	-38	26	19	5850	15	81	380	0.62	500	80	1.9	0.1	0.29	0.37	
Wainwright	675	-33	-36	29	19	5700	20	81	310	0.47	425	120	2.0	0.1	0.28	0.36	
Wetaskiwin	760	-33	-35	29	19	5500	23	86	400	0.57	500	160	2.0	0.1	0.30	0.39	
Whitecourt	690	-33	-36	27	19	5650	20	97	440	0.63	550	80	1.9	0.1	0.29	0.37	
Wimborne	975	-31	-34	29	18	5310	23	92	325	0.48	450	200	1.6	0.1	0.31	0.40	
Saskatchewan																	
Assiniboia	740	-32	-34	31	21	5180	25	81	290	0.33	375	240	1.6	0.1	0.38	0.49	
Battrum	700	-32	-34	32	20	5080	23	81	270	0.35	350	260	1.2	0.1	0.42	0.54	
Biggar	645	-34	-36	30	20	5720	23	81	270	0.39	350	180	2.1	0.1	0.35	0.45	
Broadview	600	-34	-35	30	21	5760	25	103	320	0.49	420	160	1.7	0.1	0.36	0.46	
Dafoe	530	-35	-37	29	21	5860	20	92	300	0.46	380	140	1.7	0.1	0.29	0.37	
Dundurn	525	-35	-37	30	21	5600	23	86	275	0.40	380	180	1.5	0.1	0.36	0.46	
Estevan	565	-32	-34	32	22	5340	28	92	330	0.43	420	200	1.6	0.1	0.40	0.52	
Hudson Bay	370	-36	-38	29	21	6280	20	81	340	0.59	450	80	2.0	0.1	0.29	0.37	
Humboldt	565	-36	-38	28	21	6000	20	86	320	0.48	375	140	2.1	0.1	0.30	0.39	
Island Falls	305	-39	-41	27	20	7100	18	76	370	0.62	510	80	2.1	0.1	0.27	0.35	P
Kamsack	455	-34	-37	29	22	6040	20	97	360	0.55	450	120	2.1	0.2	0.31	0.40	
Kindersley	685	-33	-35	31	20	5550	23	81	260	0.38	325	200	1.4	0.1	0.36	0.46	5.
Lloydminster	645	-34	-37	28	20	5880	18	81	310	0.53	430	120	2.0	0.1	0.31	0.40	
Maple Creek	765	-31	-34	31	20	4780	25	81	275	0.28	380	220	1.2	0.1	0.35	0.45	
Meadow Lake	480	-38	-40	28	20	6280	18	81	320	0.53	450	120	1.7	0.1	0.31	0.40	
Melfort	455	-36	-38	28	21	6050	20	81	310	0.50	410	120	2.1	0.1	0.28	0.36]
Melville	550	-34	-36	29	21	5880	23	97	340	0.52	410	160	1.7	0.1	0.31	0.40	
Moose Jaw	545	-32	-34	31	21	5270	25	86	270	0.33	360	200	1.4	0.1	0.40	0.52	
Nipawin	365	-37	-39	28	21	6300	20	76	340	0.56	450	100	2.0	0.1	0.29	0.38	
North Battleford	545	-34	-36	29	20	5900	20	81	280	0.46	370	120	1.7	0.1	0.36	0.46	
Prince Albert	435	-37	-40	28	21	6100	20	81	320	0.51	410	140	1.9	0.1	0.29	0.38	1
Qu'Appelle	645	-34	-36	30	22	5620	25	97	340	0.45	430	160	1.7	0.1	0.33	0.42	
Regina	575	-34	-36	31	21	5600	28	103	300	0.39	365	200	1.4	0.1	0.38	0.49	
Rosetown	595	-34	-36	31	20	5620	23	81	260	0.37	330	200	1.7	0.1	0.38	0.49	
Saskatoon	500	-35	-37	30	21	5700	23	86	265	0.41	350	160	1.7	0.1	0.33	0.43	1
Scott	645	-34	-36	30	20	5960	20	81	270	0.41	360	140	1.9	0.1	0.35	0.45	1
Strasbourg	545	-34	-36	30	22	5600	25	92	300	0.41	390	180	1.5	0.1	0.33	0.42	

				•	mpera		De-	15	One	_		Ann.	Driv- ing Rain	Snow		Hourly]
D,	rovince and Location	Elev.,	Janı	Jary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Tot.	Wind	kPa,	1/50	Pressur	es, kPa	
		m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	Ss	S _r	1/10	1/50	
5	Swift Current	750	-31	-34	31	20	5150	25	81	260	0.34	350	240	1.4	0.1	0.42	0.54	
I	Uranium City	265	-42	-44	26	19	7500	12	54	300	0.59	360	100	2.0	0.1	0.28	0.36	
1	Weyburn	575	-33	-35	31	23	5400	28	97	320	0.40	400	200	1.8	0.1	0.37	0.48	
· ·	Yorkton	510	-34	-37	29	21	6000	23	97	350	0.54	440	140	1.9	0.1	0.31	0.40	
Mani	itoba																	
E	Beausejour	245	-33	-35	29	23	5680	28	103	430	0.61	530	180	2.0	0.2	0.32	0.41	
E	Boissevain	510	-32	-34	30	23	5500	28	119	390	0.54	510	180	2.2	0.2	0.40	0.52	
E	Brandon	395	-33	-35	30	22	5760	28	108	375	0.56	460	180	2.1	0.2	0.38	0.49	
(Churchill	10	-38	-40	25	18	8950	12	76	265	0.82	410	260	3.0	0.2	0.43	0.55	
L I	Dauphin	295	-33	-35	30	22	5900	28	103	400	0.56	490	160	1.9	0.2	0.31	0.40	
F	Flin Flon	300	-38	-40	27	20	6440	18	81	340	0.59	475	80	2.2	0.2	0.27	0.35]
(Gimli	220	-34	-36	29	23	5800	28	108	410	0.65	530	180	1.9	0.2	0.31	0.40	
	Island Lake	240	-36	-38	27	20	6900	18	86	380	0.67	550	80	2.6	0.2	0.29	0.37	
	Lac du Bonnet	260	-34	-36	29	23	5730	28	103	445	0.65	560	180	1.9	0.2	0.29	0.37	
1	Lynn Lake	350	-40	- 42	27	19	7770	18	86	310	0.62	490	100	2.4	0.2	0.29	0.37	
1	Morden	300	-31	-33	30	24	5400	28	119	420	0.55	520	180	2.2	0.2	0.40	0.52	
1	Neepawa	365	-32	-34	29	23	5760	28	108	410	0.58	470	180	2.2	0.2	0.34	0.44	\mathbf{P}
F	Pine Falls	220	-34	-36	28	23	5900	25	97	440	0.66	420	180	1.9	0.2	0.30	0.39	
F	Portage la Prairie	260	-31	-33	30	23	5600	28	108	390	0.51	525	180	2.1	0.2	0.36	0.46	
F	Rivers	465	-34	-36	29	23	5840	28	108	370	0.56	460	180	2 <u>.</u> 1	0.2	0.36	0.46	
	Sandilands	365	-32	-34	29	23	5650	28	113	460	0.58	550	180	2.2	0.2	0.31	0.40	
5	Selkirk	225	-33	-35	29	23	5700	28	108	420	0.61	500	180	1.9	0.2	0.32	0.41	
5	Split Lake	175	-38	-40	27	19	7900	18	76	325	0.66	500	120	2.5	0.2	0.30	0.39	N
5	Steinbach	270	-33	-35	29	23	5700	28	108	440	0.58	500	180	2.0	0.2	0.31	0.40	
5	Swan River	335	-34	-37	29	22	6100	20	92	370	0.58	500	120	2.0	0.2	0.27	0.35	
-	The Pas	270	-36	-38	28	21	6480	18	81	330	0.59	450	160	2.2	0.2	0.29	0.37	
-	Thompson	205	-40	-43	27	19	7600	18	86	350	0.64	540	100	2.4	0.2	0.28	0.36	
1	Virden	435	-33	-35	30	23	5620	28	108	350	0.53	460	180	2.0	0.2	0.36	0.46	
۱	Winnipeg	235	-33	-35	30	23	5670	28	108	415	0.58	500	180	1.9	0.2	0.35	0.45	
Onta	ario]
	Ailsa Craig	230	-17	-19	30	23	3840	25	103	800	0.93	950	180	2.2	0.4	0.39	0.50	
	Ajax	95	-20	-22	30	23	3820	23	92	760	0.90	825	160	1.0	0.4	0.37	0.48	
	Alexandria	80	-24	-26	30	23	4600	25	103	800	0.91	975	160	2.4	0.4	0.31	0.40	
	Alliston	220	-23	-25	29	23	4200	28	113	690	0.81	875	120	2.0	0.4	0.28	0.36	
	Almonte	120	-26	-28	30	23	4620	25	97	730	0.84	800	140	2.5	0.4	0.32	0.41	
/	Armstrong	340	-37	-40	28	21	6500	23	97	525	0.75	725	100	2.7	0.4	0.23	0.30]
/	Arnprior	85	-27	-29	30	23	4680	23	86	630	0.76	775	140	2.5	0.4	0.29	0.37	
	Atikokan	400	-33	-35	29	22	5750	25	103	570	0.77	760	100	2.4	0.3	0.23	0.30	
	Attawapiskat	10	-37	-39	28	21	7100	18	81	450	0.79	650	160	2.8	0.3	0.32	0.41	
	Aurora	270	-21	-23	30	23	4210	28	108	700	0.81	800	140	2.0	0.4	0.34	0.44	

		Des Jani	•	mpera July		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,			/ Wind res, kPa
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50
Bancroft	365	-28	-31	29	23	4740	25	92	720	0.85	900	100	3.1	0.4	0.25	0.32
Barrie	245	-24	-26	29	23	4380	28	97	700	0.83	900	120	2.5	0.4	0.28	0.36
Barriefield	100	-22	-24	28	23	3990	23	108	780	0.96	950	160	2.1	0.4	0.36	0.47
Beaverton	240	-24	-26	30	23	4300	25	108	720	0.87	950	120	2.2	0.4	0.28	0.36
Belleville	90	-22	-24	29	23	3910	23	97	760	0.89	850	180	1.7	0.4	0.33	0.43
Belmont	260	-17	-19	30	24	3840	25	97	850	0.95	950	180	1.7	0.4	0.36	0.47
Kitchenuhmay- koosib (Big Trout Lake)	215	-38	-40	26	20	7450	18	92	400	0.75	600	150	3.2	0.2	0.33	0.42
CFB Borden	225	-23	-25	29	23	4300	28	103	690	0.82	875	120	2.2	0.4	0.28	0.36
Bracebridge	310	-26	-28	29	23	4800	25	103	830	0.95	1050	120	3.1	0.4	0.27	0.35
Bradford	240	-23	-25	30	23	4280	28	108	680	0.80	800	120	2.1	0.4	0.28	0.36
Brampton	215	-19	-21	30	23	4100	28	119	720	0.81	820	140	1.3	0.4	0.34	0.44
Brantford	205	-18	-20	30	23	3900	23	103	780	0.89	850	160	1.3	0.4	0.33	0.42
Brighton	95	-21	-23	29	23	4000	23	94	760	0.90	850	160	1.6	0.4	0.37	0.48
Brockville	85	-23	-25	29	23	4060	25	103	770	0.89	975	180	2.2	0.4	0.34	0.44
Burk's Falls	305	-26	-28	29	22	5020	25	97	810	0.94	1010	120	2.7	0.4	0.27	0.35
Burlington	80	-17	-19	31	23	3740	23	103	770	0.91	850	160	1.1	0.4	0.36	0.46
Cambridge	295	-18	- 20	29	23	4100	25	113	800	0.91	890	160	1.6	0.4	0.28	0.36
Campbellford	150	-23	-26	30	23	4280	25	97	730	0.85	850	160	1.7	0.4	0.32	0.41
Cannington	255	-24	-26	30	23	4310	25	108	740	0.85	950	120	2.2	0.4	0.28	0.36
Carleton Place	135	-25	-27	30	23	4600	25	97	730	0.84	850	160	2.5	0.4	0.32	0.41
Cavan	200	-23	-25	30	23	4400	25	97	740	0.86	850	140	2.0	0.4	0.34	0.44
Centralia	260	-17	-19	30	23	3800	25	103	820	0.95	1000	180	2.3	0.4	0.38	0.49
Chapleau	425	-35	-38	27	21	5900	20	97	530	0.72	850	80	3.6	0.4	0.23	0.30
Chatham	180	-16	-18	31	24	3470	28	103	800	0.86	850	180	1.0	0.4	0.33	0.43
Chesley	275	-19	-21	29	22	4320	28	103	810	0.94	1125	140	2.8	0.4	0.37	0.48
Clinton	280	-17	-19	29	23	4150	25	103	810	0.94	1000	160	2.6	0.4	0.38	0.49
Coboconk	270	-25	-27	30	23	4500	25	108	740	0.87	950	120	2.5	0.4	0.27	0.35
Cobourg	90	-21	-23	29	23	3980	23	94	760	0.90	825	160	1.2	0.4	0.38	0.49
Cochrane	245	-34	-36	29	21	6200	20	92	575	0.77	875	80	2.8	0.3	0.27	0.35
Colborne	105	-21	-23	29	23	3980	23	94	760	0.90	850	160	1.6	0.4	0.38	0.49
Collingwood	190	-21	-23	29	23	4180	28	97	720	0.87	950	160	2.7	0.4	0.30	0.39
Cornwall	35	-23	-25	30	23	4250	25	103	780	0.89	960	180	2.2	0.4	0.32	0.41
Corunna	185	-16	-18	31	24	3600	25	100	760	0.87	800	180	1.0	0.4	0.36	0.47
Deep River	145	-29	-32	30	22	4900	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
Deseronto	85	-22	- 24	29	23	4070	23	92	760	0.89	900	160	1.9	0.4	0.33	0.43
Dorchester	260	-18	-20	30	24	3900	28	103	850	0.96	950	180	1.9	0.4	0.36	0.47
Dorion	200	-33	-35	28	21	5950	20	103	550	0.77	725	160	2.8	0.4	0.30	0.39
Dresden	185	-16	-18	31	24	3750	28	97	760	0.84	820	180	1.0	0.4	0.33	0.43
Dryden	370	-34	-36	28	22	5850	25	97	550	0.70	700	120	2.4	0.3	0.23	0.30

			sign Te uary	mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa.	Load, 1/50		/ Wind res, kPa]
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	S _s	Sr	1/10	1/50	-
Dundalk	525	-22	-24	29	22	4700	28	108	750	0.89	1080	150	3.2	0.4	0.33	0.42	-
Dunnville	175	-15	-17	30	24	3660	23	108	830	0.95	950	160	2.0	0.4	0.36	0.46	
Durham	340	-20	-22	29	22	4340	28	103	815	0.94	1025	140	2.8	0.4	0.34	0.44	
Dutton	225	-16	-18	31	24	3700	28	92	850	0.96	925	180	1.3	0.4	0.36	0.47	
Earlton	245	-33	-36	29	22	5730	23	92	560	0.75	820	120	3.1	0.4	0.35	0.45	
Edison	365	-34	-36	28	22	5740	25	108	510	0.65	680	120	2.4	0.3	0.24	0.31	
Elliot Lake	380	-26	-28	29	21	4950	23	108	630	0.83	950	160	2.9	0.4	0.29	0.38	
Elmvale	220	-24	-26	29	23	4200	28	97	720	0.87	950	140	2.6	0.4	0.28	0.36	
Embro	310	-19	-21	30	23	3950	28	113	830	0.94	950	160	2.0	0.4	0.37	0.48	
Englehart	205	-33	-36	29	22	5800	23	92	600	0.78	880	100	2.8	0.4	0.32	0.41	
Espanola	220	-25	-27	29	21	4920	23	108	650	0.83	840	160	2.3	0.4	0.33	0.42	
Exeter	265	-17	-19	30	23	3900	25	113	810	0.94	975	180	2.4	0.4	0.38	0.49	
Fenelon Falls	260	-25	-27	30	23	4440	25	108	730	0.86	950	120	2.3	0.4	0.28	0.36	
Fergus	400	-20	-22	29	23	4300	28	108	760	0.87	925	160	2.2	0.4	0.28	0.36	
Forest	215	-16	-18	31	23	3740	25	103	810	0.95	875	160	2.0	0.4	0.37	0.48	
Fort Erie	180	-15	-17	30	24	3650	23	108	860	0.98	1020	160	2.3	0.4	0.36	0.46	
Fort Erie (Ridgeway)	190	-15	-17	30	24	3600	25	108	860	0.98	1000	160	2.3	0.4	0.36	0.46	
Fort Frances	340	-33	-35	29	22	5440	25	108	570	0.71	725	120	2.3	0.3	0.24	0.31	
Gananoque	80	-22	-24	28	23	4010	23	103	760	0.91	900	180	2.1	0.4	0.36	0.47	
Geraldton	345	-36	-39	28	21	6450	20	86	550	0.77	725	100	2.9	0.4	0.23	0.30	
Glencoe	215	-16	-18	31	24	3680	28	103	800	0.91	925	180	1.5	0.4	0.33	0.43	
Goderich	185	-16	-18	29	23	4000	25	92	810	0.95	950	180	2.4	0.4	0.43	0.55	
Gore Bay	205	-24	-26	28	22	4700	23	92	640	0.84	860	160	2.6	0.4	0.34	0.44	N
Graham	495	-35	-37	29	22	5940	23	97	570	0.75	750	140	2.6	0.3	0.23	0.30	
Gravenhurst (Muskoka Airport)	255	-26	-28	29	23	4760	25	103	790	0.92	1050	120	2.7	0.4	0.28	0.36	20
Grimsby	85	-16	-18	30	23	3520	23	108	760	0.90	875	160	0.9	0.4	0.36	0.46	
Guelph	340	-19	-21	29	23	4270	28	103	770	0.88	875	140	1.9	0.4	0.28	0.36	
Guthrie	280	-24	-26	29	23	4300	28	103	700	0.83	950	120	2.5	0.4	0.28	0.36	
Haileybury	210	-32	-35	30	22	5600	23	92	590	0.77	820	120	2.4	0.4	0.34	0.44	
Haldimand (Caledonia)	190	-18	-20	30	23	3750	23	108	810	0.93	875	160	1.2	0.4	0.34	0.44	
Haldimand (Hagersville)	215	-17	-19	30	23	3760	25	97	840	0.95	875	160	1.3	0.4	0.36	0.46	
Haliburton	335	-27	-29	29	23	4840	25	92	780	0.90	980	100	2.9	0.4	0.27	0.35	
Halton Hills (Georgetown)	255	-19	-21	30	23	4200	28	119	750	0.84	850	140	1.4	0.4	0.29	0.37	
Hamilton	90	-17	-19	31	23	3460	23	108	810	0.90	875	160	1.1	0.4	0.36	0.46	
Hanover	270	-19	-21	29	22	4300	28	103	790	0.92	1050	140	2.6	0.4	0.37	0.48	
Hastings	200	-24	-26	30	23	4280	25	92	730	0.85	840	140	2.0	0.4	0.32	0.41	
Hawkesbury	50	-25	-27	30	23	4610	23	103	800	0.91	925	160	2.3	0.4	0.32	0.41	
Hearst	245	-35	-37	29	21	6450	20	86	520	0.74	825	80	2.8	0.3	0.23	0.30	1

		Des Jani	sign Te uarv	mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,	Load, 1/50	Hourly Pressu		
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50	-
Honey Harbour	180	-24	-26	29	23	4300	25	97	710	0.87	1050	160	2.7	0.4	0.30	0.39	
Hornepayne	360	-37	-40	28	21	6340	20	93	420	0.68	750	80	3.3	0.4	0.23	0.30	
Huntsville	335	-26	-29	29	22	4850	25	103	800	0.93	1000	120	2.9	0.4	0.27	0.35	
Ingersoll	280	-18	-20	30	23	3920	28	108	840	0.95	950	180	1.7	0.4	0.37	0.48	
Iroquois Falls	275	-33	-36	29	21	6100	20	86	575	0.77	825	100	2.9	0.3	0.29	0.37	
Jellicoe	330	-36	-39	28	21	6400	20	86	550	0.76	750	100	2.7	0.4	0.23	0.30	
Kapuskasing	245	-34	-36	29	21	6250	20	86	550	0.76	825	100	3.0	0.3	0.24	0.31	
Kemptville	90	-25	-27	30	23	4540	25	92	750	0.86	925	160	2.3	0.4	0.32	0.41	
Kenora	370	-33	-35	28	22	5630	25	113	515	0.64	630	120	2.5	0.3	0.24	0.31	
Killaloe	185	-28	-31	30	22	4960	23	86	680	0.83	825	120	2.7	0.4	0.27	0.35	
Kincardine	190	-17	-19	28	22	3890	25	92	800	0.95	950	180	2.6	0.4	0.43	0.55	
Kingston	80	-22	-24	28	23	4000	23	108	780	0.96	950	180	2.1	0.4	0.36	0.47	
Kinmount	295	-26	-28	29	23	4600	25	108	750	0.88	950	120	2.7	0.4	0.27	0.35	
Kirkland Lake	325	-33	-36	29	22	6000	23	92	600	0.78	875	100	2.9	0.3	0.30	0.39	1
Kitchener	335	-19	-21	29	23	4200	28	119	780	0.89	925	140	2.0	0.4	0.29	0.37	
Lakefield	240	-24	-26	30	23	4330	25	92	720	0.85	850	140	2.2	0.4	0.29	0.38	
Lansdowne House	240	-38	-40	28	21	7150	23	92	500	0.78	680	140	3.0	0.2	0.25	0.32	
Leamington	190	-15	-17	31	24	3400	28	113	800	0.91	875	180	0.8	0.4	0.36	0.47	
Lindsay	265	-24	-26	30	23	4320	25	103	720	0.84	850	140	2.3	0.4	0.29	0.38	
Lion's Head	185	-19	-21	27	22	4300	25	103	700	0.89	950	180	2.7	0.4	0.37	0.48	
Listowel	380	-19	-21	29	23	4300	28	119	800	0.93	1000	160	2.6	0.4	0.36	0.47	
London	245	-18	-20	30	24	3900	28	103	825	0.94	975	180	1.9	0.4	0.36	0.47	
Lucan	300	-17	-19	30	23	3900	25	113	810	0.94	1000	180	2.3	0.4	0.39	0.50	IN
Maitland	85	-23	-25	29	23	4080	25	103	770	0.89	975	180	2.2	0.4	0.34	0.44	
Markdale	425	-20	-22	29	22	4500	28	103	820	0.94	1050	160	3.2	0.4	0.32	0.41	Ľ
Markham	175	-21	-23	31	24	4000	25	86	720	0.81	825	140	1.3	0.4	0.34	0.44	(
Martin	485	-35	-37	29	22	5900	25	103	560	0.75	750	120	2.6	0.3	0.23	0.30	
Matheson	265	-33	-36	29	21	6080	20	86	580	0.77	825	100	2.8	0.3	0.30	0.39	
Mattawa	165	-29	-31	30	22	5050	23	86	700	0.86	875	100	2.1	0.4	0.25	0.32	1
Midland	190	-24	-26	29	23	4200	25	97	740	0.88	1060	160	2.7	0.4	0.30	0.39	
Milton	200	-18	-20	30	23	3920	25	125	750	0.85	850	160	1.3	0.4	0.33	0.43	
Milverton	370	-19	-21	29	23	4200	28	108	800	0.93	1050	160	2.4	0.4	0.33	0.43	
Minden	270	-27	-29	29	23	4640	25	97	780	0.90	1010	100	2.7	0.4	0.27	0.35	
Mississauga	160	-18	-20	30	23	3880	25	113	720	0.85	800	160	1.1	0.4	0.34	0.44	1
Mississauga (Lester B. Pearson Int'l Airport)	170	-20	-22	31	24	3890	26	108	685	0.81	790	160	1.1	0.4	0.34	0.44	
Mississauga (Port Credit)	75	-18	-20	29	23	3780	25	108	720	0.87	800	160	0.9	0.4	0.37	0.48	
Mitchell	335	-18	-20	29	23	4100	28	113	810	0.94	1050	160	2.4	0.4	0.37	0.48	
Moosonee	10	-36	-38	28	22	6800	18	81	500	0.84	700	160	2.7	0.3	0.27	0.35	
Morrisburg	75	-23	-25	30	23	4370	25	103	800	0.91	950	180	2.3	0.4	0.32	0.41	1

		Des Jani	sign Te	mpera July		De-	15	One	٨٣٣		Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressur	
Province and Location	Elev.,					gree- Days	Min. Bain	Day Rain,	Ann. Rain,	Moist. Index	Tot.	Wind Pres-				
	m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	sures, Pa, 1/5	S₅	S _r	1/10	1/50
Mount Forest	420	-21	-24	28	22	4700	28	103	740	0.87	940	140	2.7	0.4	0.32	0.41
Nakina	325	-36	-38	28	21	6500	20	86	540	0.76	750	100	2.8	0.4	0.23	0.30
Nanticoke (Jarvis)	205	-17	-18	30	23	3700	28	108	840	0.95	900	160	1.4	0.4	0.37	0.48
Nanticoke (Port Dover)	180	-15	-17	30	24	3600	25	108	860	0.98	950	140	1.2	0.4	0.37	0.48
Napanee	90	-22	-24	29	23	4140	23	92	770	0.90	900	160	1.9	0.4	0.33	0.43
New Liskeard	180	-32	-35	30	22	5570	23	92	570	0.75	810	100	2.6	0.4	0.33	0.43
Newcastle	115	-20	-22	30	23	3990	23	86	760	0.90	830	160	1.5	0.4	0.37	0.48
Newcastle (Bowmanville)	95	-20	-22	30	23	4000	23	86	760	0.90	830	160	1.4	0.4	0.37	0.48
Newmarket	185	-22	-24	30	23	4260	28	108	700	0.81	800	140	2.0	0.4	0.29	0.38
Niagara Falls	210	-16	-18	30	23	3600	23	96	810	0.94	950	160	1.8	0.4	0.33	0.43
North Bay	210	-28	-30	28	22	5150	25	95	775	0.93	975	120	2.2	0.4	0.27	0.34
Norwood	225	-24	-26	30	23	4320	25	92	720	0.84	850	120	2.1	0.4	0.32	0.41
Oakville	90	-18	-20	30	23	3760	23	97	750	0.90	850	160	1.1	0.4	0.36	0.47
Orangeville	430	-21	-23	29	23	4450	28	108	730	0.84	875	140	2.3	0.4	0.28	0.36
Orillia	230	-25	-27	29	23	4260	25	103	740	0.88	1000	120	2.4	0.4	0.28	0.36
Oshawa	110	-19	-21	30	23	3860	23	86	760	0.90	875	160	1.4	0.4	0.37	0.48
Ottawa (Metropolitan)																
Ottawa (City Hall)	70	-25	-27	30	23	4440	23	86	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Barrhaven)	98	-25	-27	30	23	4500	25	92	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Kanata)	98	-25	-27	30	23	4520	25	92	730	0.84	900	160	2.5	0.4	0.32	0.41
Ottawa (M-C Int'I Airport)	125	-25	-27	30	23	4500	24	89	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Orleans)	70	-26	-28	30	23	4500	23	91	750	0.84	900	160	2.4	0.4	0.32	0.41
Owen Sound	215	-19	-21	29	22	4030	28	113	760	0.90	1075	160	2.8	0.4	0.37	0.48
Pagwa River	185	-35	-37	28	21	6500	20	86	540	0.76	825	80	2.7	0.4	0.23	0.30
Paris	245	-18	-20	30	23	4000	23	96	790	0.90	925	160	1.4	0.4	0.33	0.42
Parkhill	205	-16	-18	31	23	3800	25	103	800	0.93	925	180	2.1	0.4	0.39	0.50
Parry Sound	215	-24	-26	28	22	4640	23	97	820	0.95	1050	160	2.8	0.4	0.30	0.39
Pelham (Fonthill)	230	-15	-17	30	23	3690	23	96	820	0.94	950	160	2.1	0.4	0.33	0.42
Pembroke	125	-28	-31	30	23	4980	23	105	640	0.80	825	100	2.5	0.4	0.27	0.35
Penetanguishene	220	-24	-26	29	23	4200	25	97	720	0.87	1050	160	2.8	0.4	0.30	0.39
Perth	130	-25	-27	30	23	4540	25	92	730	0.84	900	140	2.3	0.4	0.32	0.41
Petawawa	135	-29	-31	30	23	4980	23	92	640	0.80	825	100	2.6	0.4	0.27	0.35
Peterborough	200	-23	-25	30	23	4400	25	92	710	0.83	840	140	2.0	0.4	0.32	0.41
Petrolia	195	-16	-18	31	24	3640	25	108	810	0.89	920	180	1.3	0.4	0.36	0.47
Pickering (Dunbarton)	85	-19	-21	30	23	3800	23	92	730	0.88	825	140	1.0	0.4	0.37	0.48
Picton	95	-21	-23	29	23	3980	23	92	770	0.91	940	160	2.0	0.4	0.38	0.49
Plattsville	300	-19	-21	29	23	4150	28	103	820	0.93	950	140	1.9	0.4	0.33	0.42
Point Alexander	150	-29	-32	30	22	4960	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
Port Burwell	195	-15	-17	30	24	3800	25	92	930	1.05	1000	180	1.2	0.4	0.36	0.47

N

			Des Jani		mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressu	/ Wind res, kPa	
	Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	S _r	1/10	1/50	
	Port Colborne	180	-15	-17	30	24	3600	23	108	850	0.97	1000	160	2.1	0.4	0.36	0.46	
	Port Elgin	205	-17	-19	28	22	4100	25	92	790	0.94	850	180	2.8	0.4	0.43	0.55	
	Port Hope	100	-21	-23	29	23	3970	23	94	760	0.90	825	180	1.2	0.4	0.37	0.48	
	Port Perry	270	-22	-24	30	23	4260	25	97	720	0.84	850	140	2.4	0.4	0.34	0.44	
	Port Stanley	180	-15	-17	31	24	3850	25	92	940	1.05	975	180	1.2	0.4	0.36	0.47	
	Prescott	90	-23	-25	29	23	4120	25	103	770	0.88	975	180	2.2	0.4	0.34	0.44	
	Princeton	280	-18	-20	30	23	4000	25	97	810	0.92	925	160	1.5	0.4	0.33	0.42	
	Raith	475	-34	-37	28	22	5900	23	97	570	0.75	750	120	2.7	0.4	0.23	0.30	
	Rayside-Balfour (Chelmsford)	270	-28	-30	29	21	5200	25	92	650	0.80	850	180	2.5	0.4	0.35	0.45	
	Red Lake	360	-35	-37	28	21	6220	20	92	470	0.69	630	120	2.6	0.3	0.23	0.30	
	Renfrew	115	-27	-30	30	23	4900	23	97	620	0.75	810	140	2.5	0.4	0.27	0.35	
	Richmond Hill	230	-21	-23	31	24	4000	25	97	740	0.83	850	140	1.5	0.4	0.34	0.44	
	Rockland	50	-26	-28	30	23	4600	23	92	780	0.89	950	160	2.4	0.4	0.31	0.40	
	Sarnia	190	-16	-18	31	24	3750	25	100	750	0.87	825	180	1.1	0.4	0.36	0.47	
	Sault Ste. Marie	190	-25	-28	29	22	4960	23	97	660	0.89	950	200	3.1	0.4	0.34	0.44	
	Schreiber	310	-34	-36	27	21	5960	20	103	600	0.82	850	160	3.3	0.4	0.30	0.39	
	Seaforth	310	-17	-19	30	23	4100	25	108	810	0.94	1025	160	2.5	0.4	0.37	0.48	
	Shelburne	495	-22	-24	29	23	4700	28	108	740	0.88	900	150	3.1	0.4	0.31	0.40	
	Simcoe	210	-17	-19	30	24	3700	28	113	860	0.97	950	160	1.3	0.4	0.35	0.45	
	Sioux Lookout	375	-34	-36	28	22	5950	25	97	520	0.69	710	100	2.6	0.3	0.23	0.30	
	Smiths Falls	130	-25	-27	30	23	4540	25	92	730	0.84	850	140	2.3	0.4	0.32	0.41	
	Smithville	185	-16	-18	30	23	3650	23	108	800	0.92	900	160	1.5	0.4	0.33	0.42	
	Smooth Rock Falls	235	-34	-36	29	21	6250	20	92	560	0.77	850	80	2.7	0.3	0.25	0.32	
	South River	355	-27	-29	29	22	5090	25	103	830	0.96	975	120	2.8	0.4	0.27	0.35	
	Southampton	180	-17	-19	28	22	4100	25	92	800	0.95	830	180	2.7	0.4	0.41	0.53	(C
	St. Catharines	105	-16	-18	30	23	3540	23	92	770	0.90	850	160	1.0	0.4	0.36	0.46	
	St. Mary's	310	-18	-20	30	23	4000	28	108	820	0.95	1025	160	2.2	0.4	0.36	0.47	
	St. Thomas	225	-16	-18	31	24	3780	25	103	900	0.99	975	180	1.4	0.4	0.36	0.47	
	Stirling	120	-23	-25	30	23	4220	25	97	740	0.86	850	120	1.7	0.4	0.31	0.40	
	Stratford	360	-18	-20	29	23	4050	28	113	820	0.95	1050	160	2.3	0.4	0.35	0.45	
	Strathroy	225	-17	-19	31	24	3780	25	103	770	0.88	950	180	1.9	0.4	0.36	0.47	
	Sturgeon Falls	205	-28	-30	29	21	5200	25	95	700	0.86	910	140	2.4	0.4	0.27	0.35	
	Sudbury	275	-28	-30	29	21	5180	25	97	650	0.79	875	200	2.5	0.4	0.36	0.46	
	Sundridge	340	-27	-29	29	22	5080	25	97	840	0.97	975	120	2.8	0.4	0.27	0.35	
	Tavistock	340	-19	-21	29	23	4100	28	113	820	0.95	1010	160	2.1	0.4	0.35	0.45	1
	Temagami	300	-30	-33	30	22	5420	23	92	650	0.82	875	120	2.6	0.4	0.29	0.37	
Γ	Thamesford	280	-19	-21	30	23	3950	28	108	820	0.93	975	160	1.9	0.4	0.37	0.48	1
	Thedford	205	-16	-18	31	23	3710	25	103	810	0.95	900	180	2.1	0.4	0.39	0.50	1
1	Thunder Bay	210	-31	-33	29	21	5650	23	108	560	0.76	710	160	2.9	0.4	0.30	0.39	

			-	sign Te	· ·		De-	15	One	A		Ann.	Driv- ing Rain	Snow kPa	Load, 1/50		/ Wind res, kPa
	Province and Location	Elev.,	Jan	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist.	Tot.	Wind	πα,	1/30	110330	
		m	2.5% °C	1% °C	Dry °C	°C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	Sr	1/10	1/50
	Tillsonburg	215	-17	-19	30	24	3840	25	103	880	0.98	980	160	1.3	0.4	0.34	0.44
	Timmins	300	-34	-36	29	21	5940	20	108	560	0.75	875	100	3.1	0.3	0.27	0.35
	Timmins (Porcupine)	295	-34	-36	29	21	6000	20	103	560	0.75	875	100	2.9	0.3	0.29	0.37
	Toronto Metropolitan Region																
	Etobicoke	160	-20	-22	31	24	3800	26	108	720	0.80	800	160	1.1	0.4	0.34	0.44
	North York	175	-20	-22	31	24	3760	25	108	730	0.82	850	150	1.2	0.4	0.34	0.44
	Scarborough	180	-20	-22	31	24	3800	25	92	730	0.87	825	160	1.2	0.4	0.36	0.47
	Toronto (City Hall)	90	-18	-20	31	23	3520	25	97	720	0.86	820	160	0.9	0.4	0.34	0.44
	Trenton	80	-22	-24	29	23	4110	23	97	760	0.89	850	160	1.6	0.4	0.36	0.47
	Trout Creek	330	-27	-29	29	22	5100	25	103	780	0.92	975	120	2.7	0.4	0.27	0.35
	Uxbridge	275	-22	-24	30	23	4240	25	103	700	0.82	850	140	2.4	0.4	0.33	0.42
	Vaughan (Woodbridge)	165	-20	-22	31	24	4100	26	113	700	0.80	800	140	1.1	0.4	0.34	0.44
	Vittoria	215	-15	-17	30	24	3680	25	113	880	0.99	950	160	1.3	0.4	0.36	0.47
	Walkerton	275	-18	-20	30	22	4300	28	103	790	0.92	1025	160	2.7	0.4	0.39	0.50
	Wallaceburg	180	-16	-18	31	24	3600	28	97	760	0.87	825	180	0.9	0.4	0.35	0.45
	Waterloo	330	-19	-21	29	23	4200	28	119	780	0.89	925	160	2.0	0.4	0.29	0.37
	Watford	240	-17	-19	31	24	3740	25	108	790	0.90	950	160	1.9	0.4	0.36	0.47
	Wawa	290	-34	-36	26	21	5840	20	93	725	0.93	950	160	3.4	0.4	0.30	0.39
	Welland	180	-15	-17	30	23	3670	23	103	840	0.96	975	160	2.0	0.4	0.33	0.43
	West Lorne	215	-16	-18	31	24	3700	28	103	840	0.95	900	180	1.3	0.4	0.36	0.47
	Whitby	85	-20	-22	30	23	3820	23	86	760	0.90	850	160	1.2	0.4	0.37	0.48
	Whitby (Brooklin)	160	-20	-22	30	23	4010	23	86	770	0.91	850	140	1.9	0.4	0.35	0.45
	White River	375	-39	-42	28	21	6150	20	92	575	0.80	825	100	3.6	0.4	0.23	0.30
	Wiarton	185	-19	-21	29	22	4300	25	103	740	0.91	1000	180	2.7	0.4	0.37	0.48
	Windsor	185	-16	-18	32	24	3400	28	103	800	0.85	900	180	0.8	0.4	0.36	0.47
	Wingham	310	-18	-20	30	23	4220	28	108	780	0.91	1050	160	2.6	0.4	0.39	0.50
	Woodstock	300	-19	-21	30	23	3910	28	113	830	0.94	930	160	1.9	0.4	0.34	0.44
	Wyoming	215	-16	-18	31	24	3700	25	103	815	0.92	900	180	1.6	0.4	0.36	0.47
Qı	lepec																
	Acton-Vale	95	-24	-27	30	23	4620	21	107	860	0.97	1050	180	2.3	0.4	0.27	0.35
	Alma	110	-31	-33	28	22	5800	20	91	700	0.86	950	160	3.3	0.4	0.27	0.35
	Amos	295	-34	-36	28	21	6160	20	91	670	0.85	920	100	3.2	0.3	0.25	0.32
	Asbestos	245	-26	-28	29	22	4800	23	96	870	0.98	1050	160	2.8	0.6	0.27	0.35
	Aylmer	90	-25	-28	30	23	4520	23	91	730	0.84	900	160	2.5	0.4	0.32	0.41
	Baie-Comeau	60	-27	-29	25	19	6020	16	91	680	0.96	1000	220	4.3	0.4	0.39	0.50
	Baie-Saint-Paul	20	-27	-29	28	21	5280	18	102	730	0.89	1000	180	3.4	0.6	0.37	0.48
	Beauport	45	-26	-29	28	22	5100	20	107	980	1.09	1200	200	3.4	0.6	0.33	0.42
	Bedford	55	-24	-26	29	23	4420	23	91	880	0.99	1260	160	2.1	0.4	0.32	0.41
	Beloeil	25	-24	-26	30	23	4500	23	91	840	0.95	1025	180	2.4	0.4	0.29	0.37

			Des Jan	sign Te	mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,			/ Wind res, kPa	
	Province and Location	Elev., m	2.5% °C		Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50	
	Brome	210	-25	-27	29	23	4730	23	96	990	1.09	1240	160	2.5	0.4	0.29	0.37	
	Brossard	15	-24	-26	30	23	4420	23	91	800	0.90	1025	180	2.4	0.4	0.33	0.42	
	Buckingham	130	-26	-28	30	23	4880	23	91	810	0.94	990	160	2.6	0.4	0.31	0.40	
	Campbell's Bay	115	-28	-30	30	23	4900	23	96	700	0.83	850	140	2.6	0.4	0.25	0.32	
	Chambly	20	-24	-26	30	23	4450	23	91	850	0.96	1000	160	2.3	0.4	0.31	0.40	
	Coaticook	295	-25	-27	28	22	4750	23	96	860	1.00	1060	160	2.3	0.6	0.27	0.35	
	Contrecoeur	10	-25	- 27	30	23	4500	20	102	810	0.94	1000	180	2.8	0.4	0.33	0.43	
	Cowansville	120	-25	-27	29	23	4540	23	91	940	1.04	1150	160	2.3	0.4	0.32	0.41	
	Deux-Montagnes	25	-25	-27	29	23	4440	23	96	820	0.92	1025	160	2.4	0.4	0.29	0.37	
	Dolbeau	120	-32	-34	28	22	6250	22	91	670	0.85	900	140	3.5	0.3	0.27	0.35	
	Drummondville	85	-26	-28	30	23	4700	22	107	870	0.98	1075	180	2.5	0.4	0.27	0.35	
	Farnham	60	-24	-26	29	23	4500	23	96	910	1.01	1050	180	2.5	0.4	0.29	0.37	
	Fort-Coulonge	110	-28	-30	30	23	4950	23	96	720	0.86	900	100	2.5	0.4	0.25	0.32	
	Gagnon	545	-34	-36	24	19	7600	17	80	580	0.89	925	140	4.6	0.4	0.30	0.39	
	Gaspé	55	-25	-26	26	20	5500	19	118	760	0.96	1100	300	4.3	0.6	0.37	0.48	
	Gatineau	95	-25	-28	30	23	4600	23	91	790	0.92	950	160	2.5	0.4	0.32	0.41	
	Gracefield	175	-28	-31	30	23	5080	23	96	700	0.85	950	140	2.6	0.4	0.25	0.32	
	Granby	120	-25	-27	29	23	4500	23	102	940	1.04	1175	160	2.3	0.4	0.27	0.35	
	Harrington-Harbour	30	-27	-29	19	16	6150	15	96	900	1.18	1150	300	4.9	0.6	0.56	0.72	
	Havre-St-Pierre	5	-27	-29	22	18	6100	15	96	780	1.05	1125	300	4.1	0.6	0.48	0.63	
	Hemmingford	75	-24	-26	30	23	4380	23	91	770	0.89	1025	160	2.4	0.4	0.31	0.40	C
	Hull	65	-25	-28	30	23	4550	23	91	730	0.84	900	160	2.4	0.4	0.32	0.41	
	lberville	35	-24	-26	29	23	4450	23	91	880	0.99	1010	160	2.2	0.4	0.32	0.41	N I
, 	Inukjuak	5	-36	-38	21	15	9150	9	54	270	0.88	420	240	4.1	0.2	0.47	0.60	\mathbb{N}
	Joliette	45	-26	-28	29	23	4720	21	102	790	0.93	1000	160	3.1	0.4	0.28	0.36	
	Kuujjuaq	25	-37	-39	24	17	8550	9	54	280	0.80	525	260	4.8	0.2	0.47	0.60	G
	Kuujjuarapik	20	-36	-38	25	17	7990	12	80	410	0.85	610	180	4.2	0.3	0.43	0.55	
	La Pocatière	55	-24	-26	28	22	5160	18	102	675	0.85	965	180	3.2	0.6	0.39	0.50	
	La-Malbaie	25	-26	-28	28	21	5400	18	102	640	0.82	900	180	3.1	0.6	0.37	0.48	
	La-Tuque	165	-30	-32	29	22	5500	23	96	720	0.87	930	160	3.4	0.4	0.27	0.35	
	Lac-Mégantic	420	-27	-29	27	22	5180	23	91	790	0.94	1025	160	3.2	0.6	0.27	0.35	
	Lachute	65	-26	-28	29	23	4640	23	96	910	1.04	1075	160	2.4	0.4	0.31	0.40	
	Lennoxville	155	-28	-30	29	22	4700	23	96	850	0.98	1100	160	2.1	0.6	0.25	0.32	
	Léry	30	-24	-26	29	23	4420	23	91	800	0.91	950	180	2.3	0.4	0.33	0.42	
	Loretteville	100	-26	-29	28	22	5200	20	102	980	1.09	1225	200	3.7	0.6	0.32	0.41	
T	Louiseville	15	-25	-28	29	23	4900	20	102	800	0.93	1025	160	2.9	0.4	0.33	0.43	1
1	Magog	215	-26	-28	29	23	4730	23	96	860	0.99	1125	160	2.3	0.4	0.27	0.35	
	Malartic	325	-33	-36	29	21	6200	20	86	640	0.82	900	100	3.3	0.3	0.25	0.32	
	Maniwaki	180	-30	-32	29	22	5280	23	96	700	0.86	900	100	2.4	0.4	0.24	0.31	
	Masson	50	-26	-28	30	23	4610	23	91	790	0.92	975	160	2.4	0.4	0.31	0.40	

		Des Jani		mpera	ture 2.5%	De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain		Load, 1/50	Hourly Pressu	v Wind res, kPa
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50
Matane	5	-24	-26	24	20	5510	18	91	640	0.88	1050	220	3.7	0.4	0.47	0.60
Mont-Joli	90	-24	-26	26	21	5370	18	91	610	0.84	920	220	4.1	0.4	0.40	0.52
Mont-Laurier	225	-29	-32	29	22	5320	24	102	790	0.93	1000	160	2.6	0.4	0.23	0.30
Montmagny	10	-25	-28	28	22	5090	20	102	880	1.01	1090	180	2.9	0.6	0.36	0.47
Montréal Region																
Beaconsfield	25	-24	-26	30	23	4440	23	91	780	0.89	950	180	2.3	0.4	0.33	0.42
Dorval	25	-24	-26	30	23	4400	23	91	760	0.85	940	180	2.4	0.4	0.33	0.42
Laval	35	-24	-26	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
Montréal (City Hall)	20	-23	-26	30	23	4200	23	96	830	0.93	1025	180	2.6	0.4	0.33	0.42
Montréal-Est	25	-23	-26	30	23	4470	23	96	830	0.93	1025	180	2.7	0.4	0.33	0.42
Montréal-Nord	20	-24	-26	30	23	4470	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
Outremont	105	-23	-26	30	23	4300	23	96	820	0.91	1025	180	2.8	0.4	0.33	0.42
Pierrefonds	25	-24	-26	30	23	4430	23	96	800	0.90	960	180	2.4	0.4	0.33	0.42
St-Lambert	15	-23	-26	30	23	4400	23	96	810	0.91	1050	160	2.5	0.4	0.33	0.42
St-Laurent	45	-23	-26	30	23	4270	23	96	790	0.89	950	160	2.5	0.4	0.33	0.42
Ste-Anne-de- Bellevue	35	-24	-26	29	23	4460	23	96	780	0.89	960	180	2.3	0.4	0.33	0.42
Verdun	20	-23	-26	30	23	4200	23	91	780	0.88	1025	180	2.5	0.4	0.33	0.42
Nicolet (Gentilly)	15	- 25	-28	29	23	4900	20	107	860	0.98	1025	160	2.8	0.4	0.33	0.42
Nitchequon	545	-39	-41	23	19	8100	15	70	500	0.89	825	140	3.5	0.3	0.29	0.37
Noranda	305	-33	-36	29	21	6050	20	91	650	0.82	875	100	3.2	0.3	0.27	0.35
Percé	5	-21	-24	25	19	5400	16	107	1000	1.18	1300	300	3.8	0.6	0.56	0.72
Pincourt	25	-24	-26	29	23	4480	23	96	780	0.88	950	180	2.3	0.4	0.33	0.42
Plessisville	145	-26	-28	29	23	5100	21	107	890	1.00	1150	180	2.8	0.6	0.27	0.35
Port-Cartier	20	-28	-30	25	19	6060	15	106	730	0.99	1125	300	4.1	0.4	0.42	0.54
Puvirnituq	5	-36	-38	23	16	9200	7	54	210	0.87	375	240	4.5	0.2	0.47	0.60
Québec City Region																
Ancienne- Lorette	35	-25	-28	28	23	5130	20	102	940	1.06	1200	200	3.4	0.6	0.32	0.41
Lévis	50	-25	-28	28	22	5050	20	107	920	1.04	1200	160	3.3	0.6	0.32	0.41
Québec	120	-25	-28	28	22	5080	20	107	925	1.04	1210	200	3.6	0.6	0.32	0.41
Sillery	10	-25	-28	28	23	5070	20	107	930	1.05	1200	200	3.1	0.6	0.32	0.41
Ste-Foy	115	-25	-28	28	23	5100	20	107	940	1.06	1200	180	3.7	0.6	0.32	0.41
Richmond	150	-25	-27	29	22	4700	23	96	870	0.98	1060	160	2.4	0.6	0.25	0.32
Rimouski	30	-25	-27	26	20	5300	18	91	640	0.84	890	200	3.8	0.4	0.40	0.52
Rivière-du-Loup	55	-25	-27	26	21	5380	18	91	660	0.84	900	180	3.5	0.6	0.39	0.50
Roberval	100	-31	-33	28	21	5750	22	91	590	0.77	910	140	3.5	0.3	0.27	0.35
Rock-Island	160	-25	-27	29	23	4850	23	91	900	1.03	1125	160	2.0	0.4	0.27	0.35
Rosemère	25	-24	-26	29	23	4550	23	96	840	0.97	1050	160	2.6	0.4	0.31	0.40
Rouyn	300	-33	-36	29	21	6050	20	91	650	0.82	900	100	3.1	0.3	0.27	0.35
Saguenay	10	-30	-32	28	22	5700	18	86	710	0.88	975	140	2.7	0.4	0.28	0.36

		Des Jani		mpera July :		De- gree-	15	One Day	Ann.		Ann.	Driv- ing Rain	Snow kPa,	Load, 1/50	Hourly Pressu	/ Wind res, kPa	
Province and Location	Elev., m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Min. Rain, mm	Rain, 1/50, mm	Rain, mm	Moist. Index	Tot. Ppn., mm	Wind Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50	
Saguenay (Bagotville)	5	-31	-33	28	21	5700	18	86	690	0.86	925	160	2.7	0.4	0.29	0.38	
Saguenay (Jonquière)	135	-30	-32	28	22	5650	18	86	710	0.87	925	160	3.1	0.4	0.27	0.35	
Saguenay (Kenogami)	140	-30	-32	28	22	5650	18	86	690	0.86	925	160	3.1	0.4	0.27	0.35	
Saint-Eustache	35	-25	-27	29	23	4500	23	96	820	0.92	1025	160	2.4	0.4	0.29	0.37	
Saint-Jean-sur- Richelieu	35	-24	-26	29	23	4450	23	91	880	0.99	1010	180	2.2	0.4	0.32	0.41	
Salaberry-de- Valleyfield	50	-23	-25	29	23	4400	23	96	760	0.87	900	180	2.3	0.4	0.33	0.42	
Schefferville	550	-37	-39	24	16	8550	13	64	410	0.81	800	180	4.5	0.3	0.33	0.42	
Senneterre	310	-34	-36	29	21	6180	22	91	740	0.91	925	100	3.3	0.3	0.25	0.32	
Sept-Îles	5	-29	-31	24	18	6200	15	106	760	1.01	1125	300	4.1	0.4	0.42	0.54	
Shawinigan	60	-26	-29	29	23	5050	22	102	820	0.96	1050	180	3.1	0.4	0.27	0.35	
Shawville	170	- 27	-30	30	23	4880	23	96	670	0.79	880	160	2.8	0.4	0.27	0.35	
Sherbrooke	185	-28	-30	29	23	4700	23	96	900	1.03	1100	160	2.2	0.6	0.25	0.32	
Sorel	10	-25	-27	29	23	4550	20	102	800	0.93	975	180	2.8	0.4	0.33	0.43	
St-Félicien	105	-32	-34	28	22	5850	22	91	570	0.76	900	140	3.5	0.3	0.27	0.35	
St-Georges-de- Cacouna	35	-25	- 27	26	21	5400	18	91	660	0.85	925	180	3.2	0.6	0.39	0.50	2
St-Hubert	25	-24	-26	30	23	4490	23	91	820	0.92	1020	180	2.5	0.4	0.33	0.42	
Saint-Hubert-de- Rivière-du-Loup	310	-26	-28	26	21	5520	22	91	740	0.90	1025	180	4.4	0.6	0.31	0.40	
St-Hyacinthe	35	-24	-27	30	23	4500	21	91	840	0.95	1030	160	2.3	0.4	0.27	0.35	C
St-Jérôme	95	-26	-28	29	23	4820	23	96	830	0.97	1025	160	2.7	0.4	0.29	0.37	
St-Jovite	230	-29	-31	28	22	5250	23	96	810	0.99	1025	160	2.8	0.4	0.25	0.33	ΝI
St-Lazare-Hudson	60	-24	-26	30	23	4520	23	96	750	0.85	950	180	2.3	0.4	0.33	0.42	N
St-Nicolas	65	-25	-28	28	22	4990	20	102	890	1.01	1200	200	3.5	0.6	0.33	0.42	C
Ste-Agathe-des- Monts	360	-28	-30	28	22	5390	23	96	820	1.00	1170	140	3.4	0.4	0.27	0.35	U
Sutton	185	-25	- 27	29	23	4600	23	96	990	1.09	1260	160	2.4	0.4	0.32	0.41	
Tadoussac	65	-26	-28	27	21	5450	18	96	700	0.88	1000	180	3.7	0.4	0.40	0.52	
Témiscaming	240	-30	-32	30	22	5020	23	96	730	0.88	940	100	2.5	0.4	0.25	0.32	
Terrebonne	20	-25	-27	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.31	0.40	
Thetford Mines	330	-26	-28	28	22	5120	22	107	950	1.06	1230	160	3.5	0.6	0.27	0.35]
Thurso	50	-26	-28	30	23	4820	23	91	800	0.93	950	160	2.4	0.4	0.31	0.40	
Trois-Rivières	25	-25	-28	29	23	4900	20	107	860	0.98	1050	180	2.8	0.4	0.33	0.43	
Val-d'Or	310	-33	-36	29	21	6180	20	86	640	0.83	925	100	3.4	0.3	0.25	0.32	
Varennes	15	-24	-26	30	23	4500	23	96	810	0.94	1000	160	2.6	0.4	0.31	0.40	
Verchères	15	-24	-26	30	23	4450	23	96	810	0.94	1000	160	2.7	0.4	0.33	0.43	
Victoriaville	125	-26	-28	29	23	4900	21	102	850	0.97	1100	180	2.6	0.6	0.27	0.35	
Ville-Marie	200	-31	-34	30	22	5550	23	96	630	0.80	825	120	2.3	0.4	0.31	0.40	
Wakefield	120	-27	-30	30	23	4820	23	91	780	0.91	1020	160	2.4	0.4	0.27	0.34	

| |\

				mpera		De-	15	One			Ann.	Driv- ing Rain	Snow			Wind
Drovince and Leasting	Elev.,	Jan	uary	July	2.5%	gree-	Min.	Day	Ann. Rain,	Moist.	Ann. Tot.	Wind	kPa,	1/50	Pressu	res, kPa
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	S _r	1/10	1/50
Waterloo	205	-25	-27	29	23	4650	23	96	980	1.08	1250	160	2.5	0.4	0.27	0.35
Windsor	150	-25	-27	29	23	4700	23	96	930	1.04	1075	160	2.3	0.4	0.25	0.32
New Brunswick																
Alma	5	-21	-23	26	20	4500	18	144	1175	1.32	1450	260	2.6	0.6	0.37	0.48
Bathurst	10	-23	-26	30	22	5020	20	106	775	0.94	1020	180	4.1	0.6	0.37	0.48
Campbellton	30	-26	-28	29	22	5500	20	107	725	0.93	1025	180	4.3	0.4	0.35	0.45
Edmundston	160	-27	-29	28	22	5320	23	91	750	0.94	1000	160	3.4	0.6	0.29	0.38
Fredericton	15	-24	-27	29	22	4670	22	112	900	1.02	1100	160	3.1	0.6	0.29	0.38
Gagetown	20	-24	-26	29	22	4460	20	112	900	1.04	1125	180	2.8	0.6	0.31	0.40
Grand Falls	115	-27	-30	28	22	5300	23	107	850	1.00	1100	160	3.6	0.6	0.29	0.38
Miramichi	5	-24	-26	30	22	4950	20	96	825	0.97	1050	200	3.4	0.6	0.32	0.41
Moncton	20	-23	-25	28	21	4680	20	112	850	1.02	1175	220	3.0	0.6	0.39	0.50
Oromocto	20	-24	-26	29	22	4650	22	112	900	1.02	1110	160	3.0	0.6	0.30	0.39
Sackville	15	-22	-24	27	21	4590	18	112	975	1.14	1175	220	2.5	0.6	0.38	0.49
Saint Andrews	35	-22	-24	25	20	4680	19	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint George	35	-21	-23	25	20	4680	18	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint John	5	-22	-24	25	20	4570	18	139	1100	1.27	1425	260	2.3	0.6	0.41	0.53
Shippagan	5	-22	-24	28	21	4930	18	96	800	0.98	1050	260	3.4	0.6	0.48	0.63
St. Stephen	20	-24	-26	28	22	4700	20	123	1000	1.15	1160	180	2.9	0.6	0.33	0.42
Woodstock	60	-26	-29	30	22	4910	22	107	875	0.99	1100	160	3.1	0.6	0.29	0.37
Nova Scotia																
Amherst	25	-21	-24	27	21	4500	18	118	950	1.12	1150	220	2.4	0.6	0.37	0.48
Antigonish	10	-17	-20	27	21	4510	15	123	1100	1.25	1250	240	2.3	0.6	0.42	0.54
Bridgewater	10	-15	-17	27	20	4140	16	144	1300	1.45	1475	260	1.9	0.6	0.43	0.55
Canso	5	-13	-15	25	20	4400	15	123	1325	1.48	1400	260	1.7	0.6	0.48	0.61
Debert	45	-21	-24	27	21	4500	18	118	1000	1.16	1200	240	2.1	0.6	0.37	0.48
Digby	35	-15	-17	25	20	4020	15	130	1100	1.27	1275	260	2 <u>.</u> 2	0.6	0.43	0.55
Greenwood (CFB)	28	-18	-20	29	22	4140	16	118	925	1.05	1100	280	2 <u>.</u> 7	0.6	0.42	0.54
Halifax Region																
Dartmouth	10	-16	-18	26	20	4100	18	144	1250	1.40	1400	280	1.6	0.6	0.45	0.58
Halifax	55	-16	-18	26	20	4000	17	150	1350	1.49	1500	280	1.9	0.6	0.45	0.58
Kentville	25	-18	-20	28	21	4130	17	118	950	1.09	1200	260	2.6	0.6	0.42	0.54
Liverpool	20	-16	-18	27	20	3990	16	150	1325	1.48	1425	280	1.7	0.6	0.48	0.61
Lockeport	5	-14	-16	25	20	4000	18	139	1250	1.42	1450	280	1.4	0.6	0.47	0.60
Louisburg	5	-15	-17	26	20	4530	15	118	1300	1.46	1500	300	2.1	0.7	0.50	0.65
Lunenburg	25	-15	-17	26	20	4140	16	144	1300	1.45	1450	260	1.9	0.6	0.48	0.61
New Glasgow	30	-19	-21	27	21	4320	15	135	975	1.13	1200	260	2.2	0.6	0.43	0.55
North Sydney	20	-16	-19	27	21	4500	15	123	1200	1.36	1475	300	2.4	0.6	0.46	0.59
Pictou	25	-19	-21	27	21	4310	15	107	950	1.11	1175	260	2.2	0.6	0.43	0.55
Port Hawkesbury	40	-17	-19	27	21	4500	15	128	1325	1.48	1450	260	2.1	0.6	0.57	0.74

N

		Des	ign Te	mpera		De-	15	One			Ann.	Driv- ing Rain		Load,		Wind
Dravines and Lesstian	Elev.,	Janı	Jary	July	2.5%	gree-	Min.	Day	Ann.	Moist.	Tot.	Wind	kPa,	1/50	Pressui	res, kPa
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50
Springhill	185	-20	-23	27	21	4540	18	118	1075	1.22	1175	220	3.1	0.6	0.37	0.48
Stewiacke	25	-20	-22	27	21	4400	18	128	1050	1.20	1250	240	1.8	0.6	0.39	0.50
Sydney	5	-16	-19	27	21	4530	15	123	1200	1.36	1475	300	2.3	0.6	0.46	0.59
Tatamagouche	25	-20	-23	27	21	4380	18	118	875	1.05	1150	260	2.2	0.6	0.43	0.55
Truro	25	-20	-22	27	21	4500	18	118	1000	1.16	1175	240	2.0	0.6	0.37	0.48
Wolfville	35	-19	-21	28	21	4140	17	118	975	1.13	1175	260	2.6	0.6	0.42	0.54
Yarmouth	10	-14	-16	22	19	3990	19	135	1125	1.32	1260	280	1.8	0.6	0.43	0.56
Prince Edward Island																
Charlottetown	5	-20	-22	26	21	4460	16	107	900	1.09	1150	350	2.7	0.6	0.43	0.56
Souris	5	-19	-21	27	21	4550	15	112	950	1.14	1130	350	2.7	0.6	0.45	0.58
Summerside	10	-20	-22	27	21	4600	16	112	825	1.03	1060	350	3.1	0.6	0.47	0.60
Tignish	10	-20	-22	27	21	4770	16	96	800	1.01	1100	350	3.2	0.6	0.51	0.66
Newfoundland																
Argentia	15	-12	-14	21	18	4600	15	107	1250	1.47	1400	400	2.4	0.7	0.58	0.75
Bonavista	15	-14	-16	24	19	5000	18	96	825	1.11	1010	400	3.1	0.6	0.65	0.84
Buchans	255	-24	-27	27	20	5250	13	107	850	1.04	1125	200	4.7	0.6	0.47	0.60
Cape Harrison	5	-29	-31	26	16	6900	10	106	475	0.94	950	350	6.3	0.4	0.47	0.60
Cape Race	5	-11	-13	19	18	4900	18	130	1425	1.66	1550	400	2.3	0.7	0.81	1.05
Channel-Port aux Basques	5	-13	-15	19	18	5000	13	123	1175	1.43	1520	450	3.6	0.7	0.60	0.78
Corner Brook	35	-16	-18	26	20	4760	13	91	875	1.08	1190	300	3.7	0.6	0.43	0.55
Gander	125	-18	-20	27	20	5110	18	91	775	1.01	1180	280	3.7	0.6	0.47	0.60
Grand Bank	5	-14	-15	20	18	4550	15	123	1350	1.58	1525	400	2.4	0.7	0.57	0.74
Grand Falls	60	-26	-29	27	20	5020	15	86	775	0.97	1030	240	3.4	0.6	0.47	0.60
Happy Valley-Goose Bay	15	-31	-32	27	19	6670	18	80	575	0.83	960	160	5.3	0.4	0.33	0.42
Labrador City	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
St. Anthony	10	-25	-27	22	18	6440	13	86	800	1.07	1280	450	6.1	0.6	0.67	0.87
St. John's	65	-15	-16	24	20	4800	18	118	1200	1.41	1575	400	2.9	0.7	0.60	0.78
Stephenville	25	-16	-18	24	19	4850	14	102	1000	1.19	1275	350	4.1	0.6	0.45	0.58
Twin Falls	425	-35	-37	24	17	7790	15	70	500	0.85	950	120	4.8	0.4	0.31	0.40
Wabana	75	-15	-17	24	20	4750	18	112	1125	1.34	1500	400	3.0	0.7	0.58	0.75
Wabush	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
Yukon																
Aishihik	920	-44	-46	23	15	7500	8	43	190	0.57	275	40	1.9	0.1	0.29	0.38
Dawson	330	-50	-51	26	16	8120	10	49	200	0.57	350	40	2.9	0.1	0.24	0.31
Destruction Bay	815	-43	-45	23	14	7800	8	49	190	0.62	300	80	1.9	0.1	0.47	0.60
Faro	670	-46	-47	25	16	7300	10	33	215	0.58	315	40	2.3	0.1	0.27	0.35
Haines Junction	600	- 45	- 47	24	14	7100	8	51	145	0.56	315	180	2.2	0.1	0.26	0.34
Snag	595	-51	-53	23	16	8300	8	59	290	0.57	350	40	2.2	0.1	0.24	0.31
Teslin	690	-42	-44	24	15			38	200	0.51	340		1	0.1	0.26	0.34

				•	mpera		De-	15	One			Ann.	Driv- ing Rain	Snow kPa,		Hourly Pressur		
	Province and Location	Elev.,	Janı	uary	July	2.5%	gree- Days	Min.	Day Rain,	Ann. Rain,	Moist	Tot.	Wind	۸ra,	1750	1100001	υο, κΓα	-
		m	2.5% °C	1% °C	Dry °C	Wet °C	Below 18°C	Rain, mm	1/50, mm	mm	Index	Ppn., mm	Pres- sures, Pa, 1/5	S₅	S _r	1/10	1/50	
	Watson Lake	685	-46	-48	26	16	7470	10	54	250	0.55	410	60	3.2	0.1	0.27	0.35	
	Whitehorse	655	-41	-43	25	15	6580	8	43	170	0.49	275	40	2.0	0.1	0.29	0.38	
No	rthwest Territories																	
	Aklavik	5	-42	-44	26	17	9600	6	49	115	0.67	250	60	2.8	0.1	0.37	0.48	
	Echo Bay / Port Radium	195	-42	-44	22	16	9300	8	60	160	0.70	250	80	3.0	0.1	0.41	0.53	
	Fort Good Hope	100	-43	-45	28	18	8700	9	60	140	0.60	280	80	2.9	0.1	0.34	0.44	
	Fort McPherson	25	-44	-46	26	17	9150	6	50	145	0.67	315	60	3.2	0.1	0.31	0.40	
	Fort Providence	150	-40	-43	28	18	7620	10	71	210	0.56	350	100	2.4	0.1	0.27	0.35	
	Fort Resolution	160	-40	-42	26	18	7750	10	60	175	0.61	300	140	2.3	0.1	0.30	0.39	1
	Fort Simpson	120	-42	-44	28	19	7660	12	76	225	0.56	360	80	2.3	0.1	0.30	0.39	
	Fort Smith	205	-41	-43	28	19	7300	10	65	250	0.56	350	80	2.3	0.2	0.30	0.39	
	Hay River	45	-38	-41	27	18	7550	10	60	200	0.62	150	140	2.4	0.1	0.27	0.35	
	Holman/ Ulukhaqtuuq	10	-39	-41	18	12	10700	3	44	80	0.93	250	120	2.1	0.1	0.66	0.86	
	Inuvik	45	-43	- 45	26	17	9600	6	49	115	0.67	425	60	3.1	0.1	0.37	0.48	
	Mould Bay	5	-44	-46	11	8	12900	3	33	25	0.94	100	140	1.5	0.1	0.45	0.58	
	Norman Wells	65	-43	-45	28	18	8510	9	60	165	0.57	320	80	3.0	0.1	0.34	0.44	
	Rae-Edzo	160	-42	-44	25	17	8300	10	60	175	0.59	275	80	2.3	0.1	0.36	0.47	
	Tungsten	1340	- 49	-51	26	16	7700	10	44	315	0.75	640	40	4.3	0.1	0.34	0.44	
	Wrigley	80	-42	- 44	28	18	8050	10	54	220	0.58	350	80	2.8	0.1	0.30	0.39	
	Yellowknife	160	-41	-44	25	17	8170	10	60	175	0.58	275	100	2.2	0.1	0.36	0.47	
Nu	navut																	
	Alert	5	-43	-44	13	8	13030	3	22	20	0.95	150	100	2.6	0.1	0.58	0.75	N
	Arctic Bay	15	- 42	-44	14	10	11900	3	38	60	0.90	150	160	2.4	0.1	0.43	0.55	
	Arviat / Eskimo Point	5	-40	-41	22	16	9850	8	65	225	0.85	300	240	3.0	0.2	0.45	0.58	
	Baker Lake	5	-42	-44	23	15	10700	5	55	160	0.84	260	180	3.4	0.2	0.42	0.54	
	Cambridge Bay/Iqaluktuuttiaq	15	-41	-44	18	13	11670	4	38	70	0.89	140	100	1.9	0.1	0.42	0.54	
	Chesterfield Inlet/Igluligaarjuk	10	-40	-41	20	14	10500	5	60	175	0.88	270	240	3.6	0.2	0.43	0.56	
	Clyde River /Kanngiqtugaapik	5	-40	-42	14	10	11300	5	44	55	0.90	225	220	4.2	0.2	0.56	0.72	
	Coppermine (Kugluktuk)	10	-41	-43	23	16	10300	6	65	140	0.84	150	80	3.4	0.1	0.36	0.46	
	Coral Harbour /Salliq	15	-41	-42	20	14	10720	5	65	150	0.87	280	200	3.8	0.2	0.54	0.69	
	Eureka	5	-47	-48	12	8	13500	3	27	25	0.95	70	100	1.6	0.1	0.43	0.55	
	Iqaluit	45	- 40	-41	17	12	9980	5	58	200	0.86	433	200	2.9	0.2	0.45	0.58	
	Isachsen	10	-46	-48	12	9	13600	3	27	25	0.95	75	140	1.9	0.1	0.47	0.60	
	Nottingham Island	30	-37	-39	16	13	10000	5	54	175	0.88	325	200	4.7	0.2	0.60	0.78	
	Rankin Inlet (Kangiqiniq)	10	-41	-42	21	15	10500	5	65	180	0.87	250	240	3.0	0.2	0.47	0.60	

		Des	ign Te	mpera	ture	De-		One				Driv-	Snow	Load,	Hourly	Wind
	Elev.,	Jani	Jary	July	2.5%	gree-	15 Min.	Day	Ann.	Moist.	Ann. Tot.	ing Rain Wind	kPa,	1/50	Pressur	es, kPa
Province and Location	m	2.5% °C	1% °C	Dry °C	Wet °C	Days Below 18°C	Rain, mm	Rain, 1/50, mm	Rain, mm		Ppn., mm	Pres- sures, Pa, 1/5	Ss	Sr	1/10	1/50
Resolute	25	-42	-43	11	9	12360	3	27	50	0.93	140	180	2.0	0.1	0.54	0.69
Resolution Island	5	-32	-34	12	10	9000	5	71	240	0.89	550	200	5.5	0.2	0.95	1.23

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Appendix C: Seismic Design Data for Selected Locations in Canada

Province and Location				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
British Columbia								
100 Mile House	0.140	0.113	0.083	0.058	0.027	0.0080	0.064	0.109
Abbotsford	0.701	0.597	0.350	0.215	0.071	0.025	0.306	0.445
Agassiz	0.457	0.384	0.244	0.157	0.057	0.020	0.206	0.306
Alberni	0.955	0.915	0.594	0.373	0.124	0.044	0.434	0.683
Ashcroft	0.198	0.160	0.115	0.078	0.034	0.011	0.092	0.149
Bamfield	1.44	1.35	0.871	0.525	0.167	0.059	0.682	0.931
Beatton River	0.132	0.083	0.049	0.026	0.0083	0.0037	0.079	0.056
Bella Bella	0.208	0.232	0.187	0.129	0.049	0.017	0.103	0.286
Bella Coola	0.163	0.172	0.143	0.105	0.043	0.014	0.083	0.225
Burns Lake	0.095	0.080	0.066	0.052	0.024	0.0076	0.043	0.111
Cache Creek	0.195	0.157	0.112	0.077	0.034	0.010	0.090	0.148
Campbell River	0.595	0.582	0.408	0.265	0.094	0.034	0.283	0.487
Carmi	0.141	0.120	0.090	0.062	0.028	0.0086	0.065	0.111
Castlegar	0.129	0.100	0.074	0.048	0.022	0.0069	0.058	0.085
Chetwynd	0.176	0.121	0.068	0.033	0.013	0.0045	0.082	0.071

 Table C-3

 Seismic Design Data for Selected Locations in Canada

National Building Code of Canata 2015 Volume 1, Division B

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

Province and Location		-	-	Seismi	c Data	-		
Flowline and Elocation	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Chilliwack	0.539	0.448	0.277	0.174	0.062	0.021	0.242	0.347
Comox	0.685	0.662	0.455	0.292	0.102	0.036	0.317	0.538
Courtenay	0.692	0.670	0.461	0.296	0.104	0.037	0.321	0.545
Cranbrook	0.170	0.138	0.089	0.047	0.018	0.0062	0.075	0.085
Crescent Valley	0.130	0.101	0.073	0.047	0.021	0.0067	0.058	0.082
Crofton	1.13	1.04	0.598	0.358	0.111	0.039	0.491	0.754
Dawson Creek	0.150	0.098	0.055	0.026	0.0080	0.0032	0.080	0.059
Dease Lake	0.103	0.091	0.074	0.049	0.017	0.0067	0.044	0.078
Dog Creek	0.172	0.140	0.102	0.071	0.032	0.0098	0.079	0.140
Duncan	1.17	1.09	0.631	0.378	0.118	0.042	0.513	0.786
Elko	0.217	0.174	0.108	0.053	0.019	0.0066	0.098	0.101
Fernie	0.234	0.175	0.106	0.052	0.019	0.0065	0.106	0.101
Fort Nelson	0.141	0.103	0.068	0.036	0.012	0.0049	0.081	0.071
Fort St. John	0.145	0.094	0.053	0.026	0.0077	0.0032	0.079	0.058
Glacier	0.206	0.142	0.081	0.044	0.018	0.0058	0.093	0.083
Gold River	1.01	0.988	0.664	0.413	0.135	0.048	0.466	0.743
Golden	0.263	0.174	0.094	0.046	0.017	0.0056	0.120	0.095
Grand Forks	0.133	0.108	0.082	0.056	0.026	0.0079	0.061	0.101
Greenwood	0.136	0.113	0.085	0.059	0.027	0.0082	0.063	0.105
Норе	0.363	0.304	0.201	0.131	0.051	0.017	0.167	0.251
Jordan River	1.40	1.31	0.817	0.495	0.157	0.055	0.639	0.923
Kamloops	0.146	0.123	0.091	0.064	0.029	0.0087	0.067	0.117
Kaslo	0.142	0.109	0.073	0.043	0.019	0.0062	0.063	0.076
Kelowna	0.143	0.122	0.091	0.063	0.029	0.0087	0.066	0.115
Kimberley	0.165	0.130	0.084	0.045	0.018	0.0060	0.073	0.080
Kitimat Plant	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Kitimat Townsite	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Ladysmith	1.10	1.02	0.587	0.353	0.110	0.039	0.482	0.738
Langford	1.32	1.19	0.697	0.415	0.130	0.045	0.590	0.852
Lillooet	0.285	0.214	0.145	0.096	0.040	0.013	0.132	0.188
Lytton	0.292	0.228	0.155	0.103	0.042	0.013	0.136	0.197
Mackenzie	0.165	0.117	0.066	0.036	0.015	0.0052	0.074	0.078
Masset	0.791	0.744	0.496	0.283	0.083	0.029	0.364	0.632
McBride	0.253	0.165	0.089	0.044	0.018	0.0056	0.117	0.097
McLeod Lake	0.153	0.110	0.064	0.037	0.016	0.0053	0.068	0.078
Merritt	0.211	0.175	0.125	0.085	0.037	0.011	0.098	0.160
Mission City	0.644	0.550	0.327	0.204	0.069	0.024	0.283	0.419
Montrose	0.129	0.102	0.075	0.049	0.022	0.0069	0.058	0.086
Nakusp	0.135	0.102	0.070	0.045	0.020	0.0063	0.060	0.079
Nanaimo	1.02	0.942	0.542	0.328	0.104	0.037	0.446	0.684
Nelson	0.131	0.103	0.073	0.046	0.020	0.0065	0.058	0.080
Ocean Falls	0.180	0.199	0.163	0.117	0.046	0.015	0.091	0.258

N

Γ	Dravines and Leasting				Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	Osoyoos	0.175	0.150	0.110	0.075	0.033	0.010	0.081	0.138
	Parksville	0.917	0.859	0.519	0.322	0.106	0.038	0.405	0.639
	Penticton	0.159	0.138	0.101	0.070	0.031	0.0096	0.074	0.129
Γ	Port Alberni	0.987	0.946	0.614	0.383	0.126	0.045	0.450	0.702
	Port Alice	1.60	1.27	0.759	0.412	0.128	0.042	0.689	0.868
	Port Hardy	0.700	0.659	0.447	0.272	0.091	0.032	0.320	0.543
	Port McNeill	0.711	0.678	0.464	0.285	0.096	0.034	0.326	0.557
	Port Renfrew	1.44	1.35	0.850	0.511	0.162	0.057	0.668	0.939
	Powell River	0.595	0.556	0.373	0.242	0.086	0.031	0.273	0.457
	Prince George	0.113	0.089	0.059	0.040	0.019	0.0059	0.049	0.079
	Prince Rupert	0.246	0.269	0.209	0.135	0.046	0.016	0.117	0.314
	Princeton	0.259	0.209	0.144	0.096	0.040	0.012	0.121	0.182
	Qualicum Beach	0.888	0.838	0.517	0.323	0.108	0.038	0.395	0.629
Γ	Queen Charlotte City	1.62	1.37	0.842	0.452	0.124	0.041	0.757	0.989
	Quesnel	0.105	0.088	0.065	0.047	0.022	0.0069	0.047	0.091
	Revelstoke	0.145	0.109	0.070	0.043	0.019	0.0062	0.064	0.078
	Salmon Arm	0.131	0.104	0.075	0.052	0.024	0.0073	0.059	0.093
	Sandspit	1.31	1.16	0.724	0.396	0.110	0.036	0.603	0.868
	Sechelt	0.828	0.745	0.434	0.265	0.086	0.030	0.363	0.555
	Sidney	1.23	1.10	0.630	0.371	0.115	0.040	0.545	0.790
	Smith River	0.705	0.447	0.234	0.100	0.028	0.0096	0.354	0.255
	Smithers	0.100	0.090	0.076	0.058	0.025	0.0082	0.047	0.134
	Sooke	1.34	1.24	0.752	0.456	0.144	0.050	0.605	0.885
	Squamish	0.600	0.517	0.314	0.200	0.069	0.024	0.266	0.404
	Stewart	0.139	0.132	0.111	0.078	0.029	0.010	0.068	0.180
	Tahsis	1.35	1.19	0.767	0.456	0.144	0.050	0.622	0.852
	Taylor	0.143	0.093	0.052	0.025	0.0076	0.0031	0.079	0.058
	Terrace	0.146	0.145	0.120	0.085	0.032	0.011	0.072	0.200
	Tofino	1.46	1.36	0.891	0.536	0.170	0.060	0.695	0.945
	Trail	0.129	0.101	0.075	0.050	0.022	0.0070	0.058	0.087
	Ucluelet	1.48	1.38	0.897	0.539	0.171	0.060	0.708	0.949
	Vancouver Region								
	Burnaby (Simon Fraser Univ.)	0.768	0.673	0.386	0.236	0.076	0.027	0.333	0.500
	Cloverdale	0.800	0.702	0.400	0.243	0.077	0.027	0.347	0.519
	Haney	0.691	0.602	0.352	0.217	0.071	0.025	0.301	0.452
	Ladner	0.924	0.827	0.461	0.276	0.085	0.030	0.399	0.601
	Langley	0.772	0.674	0.387	0.236	0.076	0.027	0.335	0.500
	New Westminster	0.800	0.704	0.401	0.244	0.077	0.027	0.347	0.522
	North Vancouver	0.794	0.699	0.399	0.243	0.077	0.027	0.345	0.518
	Richmond	0.885	0.787	0.443	0.266	0.083	0.029	0.383	0.578
	Surrey (88 Ave & 156 St.)	0.786	0.690	0.394	0.240	0.076	0.027	0.341	0.511
1	Vancouver (City Hall)	0.848	0.751	0.425	0.257	0.080	0.029	0.369	0.553

				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Vancouver (Granville & 41 Ave)	0.863	0.765	0.432	0.261	0.081	0.029	0.375	0.563
West Vancouver	0.818	0.721	0.410	0.250	0.079	0.028	0.356	0.534
Vernon	0.133	0.108	0.080	0.056	0.025	0.0077	0.061	0.099
Victoria Region								
Victoria (Gonzales Hts)	1.30	1.15	0.668	0.394	0.123	0.043	0.576	0.829
Victoria (Mt Tolmie)	1.29	1.14	0.662	0.390	0.121	0.042	0.573	0.824
Victoria	1.30	1.16	0.676	0.399	0.125	0.044	0.580	0.834
Whistler	0.438	0.357	0.233	0.152	0.058	0.020	0.203	0.296
White Rock	0.868	0.765	0.432	0.260	0.081	0.029	0.376	0.562
Williams Lake	0.136	0.110	0.081	0.057	0.027	0.0080	0.062	0.110
Youbou	1.20	1.13	0.678	0.414	0.131	0.046	0.536	0.816
Alberta								
Athabasca	0.068	0.043	0.027	0.014	0.0041	0.0018	0.039	0.031
Banff	0.279	0.184	0.099	0.046	0.016	0.0053	0.128	0.097
Barrhead	0.105	0.064	0.038	0.019	0.0055	0.0024	0.065	0.046
Beaverlodge	0.153	0.102	0.057	0.028	0.0090	0.0035	0.081	0.062
Brooks	0.116	0.076	0.051	0.028	0.0089	0.0042	0.072	0.056
Calgary	0.192	0.126	0.072	0.036	0.012	0.0048	0.098	0.075
Campsie	0.113	0.067	0.040	0.020	0.0058	0.0024	0.070	0.048
Camrose	0.095	0.058	0.035	0.018	0.0052	0.0022	0.058	0.042
Canmore	0.278	0.183	0.098	0.046	0.016	0.0053	0.128	0.097
Cardston	0.273	0.203	0.122	0.058	0.018	0.0066	0.131	0.118
Claresholm	0.217	0.148	0.090	0.044	0.015	0.0056	0.107	0.089
Cold Lake	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
Coleman	0.279	0.195	0.114	0.054	0.019	0.0065	0.128	0.110
Coronation	0.075	0.048	0.029	0.015	0.0046	0.0020	0.044	0.034
Cowley	0.282	0.198	0.116	0.055	0.018	0.0065	0.130	0.113
Drumheller	0.122	0.077	0.048	0.026	0.0080	0.0037	0.075	0.055
Edmonton	0.103	0.062	0.036	0.018	0.0053	0.0022	0.064	0.044
Edson	0.165	0.111	0.062	0.030	0.0089	0.0035	0.087	0.066
Embarras Portage	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.020
Fairview	0.121	0.071	0.041	0.020	0.0059	0.0025	0.075	0.051
Fort MacLeod	0.225	0.160	0.097	0.047	0.015	0.0058	0.111	0.095
Fort McMurray	0.053	0.034	0.018	0.0078	0.0016	0.0008	0.031	0.023
Fort Saskatchewan	0.086	0.053	0.032	0.017	0.0050	0.0021	0.052	0.038
Fort Vermilion	0.056	0.036	0.019	0.0081	0.0018	0.0008	0.032	0.024
Grande Prairie	0.141	0.093	0.053	0.026	0.0074	0.0031	0.079	0.058
Habay	0.068	0.045	0.033	0.020	0.0067	0.0031	0.040	0.036
Hardisty	0.068	0.043	0.027	0.014	0.0041	0.0018	0.040	0.031
High River	0.203	0.134	0.079	0.039	0.013	0.0052	0.101	0.079
Hinton	0.280	0.182	0.096	0.043	0.015	0.0048	0.131	0.097
Jasper	0.287	0.190	0.101	0.046	0.017	0.0052	0.132	0.101

N

				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Keg River	0.067	0.042	0.025	0.012	0.0034	0.0015	0.039	0.030
Lac la Biche	0.059	0.038	0.023	0.011	0.0033	0.0015	0.034	0.027
Lacombe	0.127	0.081	0.047	0.023	0.0065	0.0027	0.077	0.055
Lethbridge	0.164	0.125	0.081	0.042	0.013	0.0053	0.087	0.079
Manning	0.081	0.049	0.029	0.015	0.0046	0.0020	0.048	0.036
Medicine Hat	0.083	0.060	0.045	0.026	0.0083	0.0039	0.050	0.047
Peace River	0.098	0.058	0.034	0.017	0.0052	0.0022	0.061	0.043
Pincher Creek	0.284	0.202	0.119	0.056	0.019	0.0066	0.132	0.115
Ranfurly	0.066	0.042	0.026	0.013	0.0039	0.0018	0.038	0.030
Red Deer	0.131	0.085	0.049	0.024	0.0067	0.0028	0.078	0.056
Rocky Mountain House	0.174	0.116	0.065	0.030	0.0090	0.0035	0.090	0.067
Slave Lake	0.075	0.047	0.029	0.015	0.0046	0.0020	0.044	0.034
Stettler	0.109	0.066	0.039	0.019	0.0056	0.0024	0.067	0.047
Stony Plain	0.115	0.069	0.040	0.020	0.0058	0.0025	0.071	0.050
Suffield	0.099	0.068	0.049	0.028	0.0087	0.0041	0.060	0.052
Taber	0.134	0.101	0.069	0.036	0.012	0.0049	0.079	0.070
Turner Valley	0.253	0.164	0.091	0.043	0.015	0.0053	0.122	0.093
Valleyview	0.126	0.078	0.045	0.022	0.0064	0.0027	0.077	0.054
Vegreville	0.069	0.044	0.027	0.014	0.0041	0.0018	0.040	0.031
Vermilion	0.060	0.038	0.023	0.012	0.0034	0.0015	0.035	0.027
Wagner	0.077	0.048	0.030	0.015	0.0046	0.0020	0.046	0.035
Wainwright	0.062	0.040	0.025	0.012	0.0037	0.0017	0.036	0.028
Wetaskiwin	0.115	0.069	0.040	0.020	0.0058	0.0024	0.071	0.048
Whitecourt	0.125	0.079	0.046	0.023	0.0064	0.0027	0.076	0.054
Wimborne	0.133	0.087	0.052	0.027	0.0081	0.0037	0.078	0.058
Saskatchewan			01001	01027	0.0001			0.000
Assiniboia	0.136	0.076	0.038	0.016	0.0034	0.0014	0.084	0.054
Battrum	0.065	0.042	0.024	0.012	0.0031	0.0015	0.037	0.030
Biggar	0.057	0.037	0.024	0.0088	0.0019	0.0010	0.033	0.025
Broadview	0.077	0.048	0.025	0.010	0.0022	0.0010	0.045	0.034
Dafoe	0.062	0.040	0.023	0.0089	0.0019	0.0010	0.036	0.027
Dundurn	0.059	0.040	0.022	0.0092	0.0019	0.0010	0.034	0.027
Estevan	0.129	0.033	0.022	0.0052	0.0013	0.0013	0.079	0.027
Hudson Bay	0.055	0.034	0.019	0.0079	0.0016	0.0008	0.032	0.023
Humboldt	0.058	0.034	0.013	0.0075	0.0018	0.0010	0.032	0.025
Island Falls	0.054	0.037	0.020	0.0065	0.0013	0.0010	0.033	0.023
Kamsack	0.058	0.037	0.020	0.0085	0.0018	0.0010	0.033	0.025
Kindersley	0.060	0.039	0.024	0.012	0.0033	0.0015	0.035	0.028
Lloydminster	0.057	0.036	0.021	0.010	0.0030	0.0015	0.033	0.025
Maple Creek	0.069	0.048	0.036	0.021	0.0068	0.0032	0.040	0.039
Meadow Lake	0.055	0.034	0.018	0.0075	0.0016	0.0008	0.032	0.023
Melfort	0.055	0.035	0.019	0.0081	0.0018	0.0010	0.032	0.024
Melville	0.069	0.044	0.023	0.0097	0.0021	0.0011	0.040	0.031

N

Province and Location				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Moose Jaw	0.096	0.058	0.030	0.013	0.0027	0.0013	0.057	0.042
Nipawin	0.054	0.034	0.018	0.0078	0.0016	0.0008	0.032	0.023
North Battleford	0.056	0.036	0.020	0.0085	0.0018	0.0010	0.032	0.024
Prince Albert	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
Qu'Appelle	0.090	0.054	0.028	0.012	0.0025	0.0011	0.054	0.039
Regina	0.101	0.060	0.030	0.013	0.0027	0.0013	0.061	0.043
Rosetown	0.059	0.038	0.022	0.0091	0.0019	0.0010	0.034	0.027
Saskatoon	0.057	0.037	0.021	0.0089	0.0019	0.0010	0.033	0.025
Scott	0.057	0.037	0.020	0.0086	0.0019	0.0010	0.033	0.025
Strasbourg	0.074	0.046	0.025	0.010	0.0022	0.0011	0.043	0.032
Swift Current	0.070	0.045	0.025	0.012	0.0030	0.0014	0.040	0.032
Uranium City	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Weyburn	0.186	0.097	0.045	0.018	0.0039	0.0014	0.118	0.070
Yorkton	0.063	0.040	0.022	0.0091	0.0019	0.0010	0.036	0.028
Manitoba								
Beausejour	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Boissevain	0.059	0.037	0.020	0.0082	0.0018	0.0010	0.034	0.025
Brandon	0.054	0.031	0.016	0.0063	0.0013	0.0007	0.031	0.020
Churchill	0.053	0.032	0.017	0.0069	0.0015	0.0008	0.031	0.021
Dauphin	0.055	0.035	0.019	0.0079	0.0018	0.0010	0.032	0.024
Flin Flon	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Gimli	0.055	0.032	0.017	0.0067	0.0015	0.0007	0.032	0.021
Island Lake	0.054	0.033	0.017	0.0070	0.0015	0.0008	0.031	0.021
Lac du Bonnet	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.033	0.023
Lynn Lake	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Morden	0.053	0.031	0.015	0.0063	0.0013	0.0007	0.031	0.020
Neepawa	0.054	0.031	0.016	0.0065	0.0013	0.0007	0.031	0.021
Pine Falls	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Portage la Prairie	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Rivers	0.058	0.037	0.020	0.0084	0.0018	0.0010	0.034	0.025
Sandilands	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Selkirk	0.055	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Split Lake	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Steinbach	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Swan River	0.055	0.035	0.019	0.0079	0.0018	0.0008	0.032	0.024
The Pas	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Thompson	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Virden	0.064	0.041	0.022	0.0089	0.0019	0.0010	0.037	0.028
Winnipeg	0.054	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Ontario								
Ailsa Craig	0.095	0.064	0.039	0.020	0.0049	0.0021	0.056	0.050
Ajax	0.210	0.114	0.060	0.029	0.0071	0.0028	0.134	0.091

N

	Province and Location		1	1	Seismi	c Data	r	r	1
		S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
A	exandria	0.589	0.309	0.148	0.068	0.018	0.0062	0.376	0.255
Al	liston	0.111	0.076	0.046	0.024	0.0059	0.0025	0.066	0.060
A	monte	0.337	0.188	0.098	0.048	0.013	0.0049	0.215	0.157
Ar	rmstrong	0.064	0.037	0.019	0.0081	0.0018	0.0008	0.038	0.025
Ar	mprior	0.371	0.201	0.102	0.049	0.013	0.0049	0.238	0.168
At	ikokan	0.069	0.038	0.018	0.0072	0.0015	0.0007	0.041	0.025
At	tawapiskat	0.074	0.043	0.022	0.0092	0.0019	0.0010	0.045	0.030
Αι	urora	0.138	0.087	0.050	0.026	0.0064	0.0027	0.085	0.068
Ba	ancroft	0.151	0.105	0.063	0.032	0.0084	0.0035	0.090	0.085
Ba	arrie	0.108	0.077	0.047	0.025	0.0061	0.0025	0.063	0.060
Ba	arriefield	0.162	0.110	0.066	0.034	0.0089	0.0038	0.098	0.091
Be	eaverton	0.117	0.082	0.050	0.026	0.0065	0.0028	0.069	0.064
Be	elleville	0.162	0.105	0.061	0.031	0.0080	0.0034	0.100	0.087
Be	elmont	0.116	0.073	0.042	0.021	0.0053	0.0021	0.070	0.056
Ki	tchenuhmay-koosib (Big Trout Lake)	0.054	0.033	0.017	0.0072	0.0015	0.0008	0.032	0.023
CI	FB Borden	0.107	0.075	0.046	0.024	0.0059	0.0025	0.063	0.059
Br	racebridge	0.116	0.084	0.051	0.027	0.0068	0.0028	0.068	0.067
Br	radford	0.123	0.081	0.048	0.025	0.0062	0.0027	0.074	0.063
Br	rampton	0.168	0.096	0.052	0.026	0.0064	0.0025	0.106	0.074
Br	rantford	0.155	0.089	0.049	0.024	0.0059	0.0024	0.097	0.068
Br	righton	0.173	0.106	0.060	0.030	0.0076	0.0032	0.108	0.087
Br	rockville	0.259	0.157	0.086	0.043	0.011	0.0046	0.164	0.131
Вι	urk's Falls	0.143	0.096	0.057	0.029	0.0074	0.0031	0.086	0.076
Вι	urlington	0.266	0.131	0.062	0.029	0.0068	0.0027	0.172	0.102
Ca	ambridge	0.141	0.084	0.047	0.024	0.0058	0.0024	0.088	0.066
Ca	ampbellford	0.144	0.097	0.058	0.030	0.0076	0.0032	0.088	0.078
Ca	annington	0.122	0.084	0.051	0.027	0.0067	0.0028	0.073	0.067
Ca	arleton Place	0.302	0.175	0.093	0.046	0.012	0.0048	0.192	0.146
Ca	avan	0.140	0.092	0.055	0.028	0.0071	0.0030	0.086	0.074
Ce	entralia	0.092	0.064	0.039	0.020	0.0050	0.0021	0.054	0.050
Cł	hapleau	0.071	0.050	0.031	0.016	0.0037	0.0017	0.041	0.039
	hatham	0.112	0.070	0.039	0.019	0.0047	0.0020	0.068	0.054
	hesley	0.083	0.062	0.040	0.021	0.0052	0.0022	0.047	0.050
	linton	0.084	0.061	0.038	0.020	0.0049	0.0021	0.048	0.048
	oboconk	0.120	0.086	0.052	0.027	0.0070	0.0030	0.070	0.068
	obourg	0.179	0.106	0.059	0.030	0.0074	0.0031	0.113	0.086
	ochrane	0.222	0.107	0.052	0.024	0.0058	0.0022	0.145	0.083
	olborne	0.176	0.106	0.060	0.030	0.0076	0.0031	0.111	0.087
	ollingwood	0.096	0.070	0.044	0.023	0.0058	0.0024	0.055	0.056
	ornwall	0.587	0.307	0.147	0.067	0.017	0.0060	0.375	0.254
	orunna	0.087	0.060	0.036	0.018	0.0046	0.0020	0.050	0.047
	eep River	0.389	0.208	0.104	0.049	0.013	0.0048	0.250	0.172

Ν

Province and Location		1		1	c Data	1		1
	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Deseronto	0.158	0.106	0.062	0.032	0.0081	0.0035	0.096	0.087
Dorchester	0.112	0.072	0.042	0.021	0.0052	0.0021	0.067	0.056
Dorion	0.059	0.035	0.018	0.0076	0.0016	0.0008	0.035	0.024
Dresden	0.104	0.067	0.039	0.019	0.0047	0.0020	0.062	0.051
Dryden	0.072	0.040	0.019	0.0076	0.0016	0.0008	0.043	0.027
Dundalk	0.097	0.069	0.043	0.022	0.0056	0.0024	0.057	0.055
Dunnville	0.232	0.120	0.059	0.028	0.0067	0.0027	0.149	0.093
Durham	0.088	0.065	0.041	0.021	0.0053	0.0022	0.051	0.051
Dutton	0.116	0.072	0.041	0.021	0.0050	0.0021	0.071	0.056
Earlton	0.182	0.108	0.059	0.029	0.0074	0.0030	0.114	0.086
Edison	0.070	0.039	0.019	0.0075	0.0016	0.0008	0.042	0.027
Elliot Lake	0.074	0.054	0.035	0.018	0.0046	0.0020	0.043	0.043
Elmvale	0.101	0.074	0.046	0.024	0.0061	0.0025	0.059	0.059
Embro	0.111	0.072	0.042	0.022	0.0053	0.0022	0.067	0.056
Englehart	0.175	0.104	0.057	0.029	0.0073	0.0030	0.109	0.083
Espanola	0.086	0.063	0.039	0.021	0.0052	0.0021	0.050	0.050
Exeter	0.090	0.063	0.039	0.020	0.0049	0.0021	0.052	0.050
Fenelon Falls	0.121	0.086	0.052	0.027	0.0068	0.0030	0.072	0.068
Fergus	0.115	0.075	0.045	0.023	0.0056	0.0024	0.069	0.059
Forest	0.087	0.061	0.037	0.019	0.0047	0.0020	0.051	0.047
Fort Erie	0.312	0.152	0.070	0.032	0.0074	0.0028	0.202	0.117
Fort Erie (Ridgeway)	0.307	0.149	0.069	0.031	0.0073	0.0028	0.198	0.115
Fort Frances	0.064	0.035	0.017	0.0069	0.0015	0.0007	0.039	0.024
Gananoque	0.180	0.119	0.070	0.036	0.0095	0.0039	0.110	0.099
Geraldton	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024
Glencoe	0.107	0.068	0.040	0.020	0.0049	0.0021	0.064	0.054
Goderich	0.079	0.059	0.037	0.019	0.0049	0.0020	0.045	0.047
Gore Bay	0.071	0.055	0.035	0.018	0.0047	0.0020	0.040	0.044
Graham	0.071	0.039	0.020	0.0079	0.0016	0.0008	0.043	0.027
Gravenhurst (Muskoka Airport)	0.112	0.082	0.050	0.026	0.0067	0.0028	0.065	0.064
Grimsby	0.301	0.146	0.068	0.030	0.0073	0.0028	0.195	0.113
Guelph	0.133	0.082	0.047	0.024	0.0058	0.0024	0.082	0.063
Guthrie	0.109	0.078	0.048	0.025	0.0062	0.0027	0.064	0.062
Haileybury	0.219	0.127	0.067	0.033	0.0083	0.0034	0.138	0.101
Haldimand (Caledonia)	0.215	0.112	0.056	0.027	0.0064	0.0025	0.138	0.087
Haldimand (Hagersville)	0.172	0.096	0.051	0.025	0.0061	0.0024	0.108	0.074
Haliburton	0.133	0.095	0.057	0.030	0.0077	0.0032	0.079	0.076
Halton Hills (Georgetown)	0.155	0.090	0.050	0.025	0.0062	0.0025	0.097	0.070
Hamilton	0.260	0.128	0.061	0.028	0.0068	0.0027	0.168	0.101
Hanover	0.085	0.063	0.040	0.020	0.0052	0.0022	0.049	0.050
Hastings	0.141	0.096	0.057	0.029	0.0074	0.0031	0.085	0.076
Hawkesbury	0.506	0.268	0.131	0.062	0.0074	0.0058	0.326	0.224

Province and Location	Seismic Data									
	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV		
Hearst	0.073	0.048	0.028	0.013	0.0031	0.0014	0.043	0.035		
Honey Harbour	0.103	0.076	0.047	0.025	0.0062	0.0027	0.060	0.060		
Hornepayne	0.063	0.043	0.025	0.012	0.0028	0.0014	0.037	0.031		
Huntsville	0.129	0.091	0.054	0.028	0.0071	0.0031	0.077	0.072		
Ingersoll	0.116	0.073	0.043	0.022	0.0053	0.0022	0.070	0.058		
Iroquois Falls	0.196	0.101	0.052	0.025	0.0061	0.0024	0.127	0.079		
Jellicoe	0.057	0.035	0.019	0.0081	0.0018	0.0010	0.033	0.024		
Kapuskasing	0.112	0.064	0.035	0.017	0.0040	0.0017	0.070	0.048		
Kemptville	0.429	0.229	0.114	0.054	0.014	0.0052	0.275	0.189		
Kenora	0.064	0.036	0.018	0.0072	0.0015	0.0007	0.038	0.024		
Killaloe	0.264	0.154	0.083	0.041	0.011	0.0044	0.168	0.127		
Kincardine	0.076	0.058	0.037	0.019	0.0049	0.0021	0.043	0.046		
Kingston	0.161	0.110	0.065	0.034	0.0089	0.0038	0.098	0.091		
Kinmount	0.123	0.089	0.054	0.028	0.0071	0.0031	0.072	0.071		
Kirkland Lake	0.159	0.095	0.053	0.027	0.0067	0.0028	0.099	0.076		
Kitchener	0.122	0.077	0.045	0.023	0.0056	0.0024	0.074	0.060		
Lakefield	0.130	0.091	0.055	0.028	0.0073	0.0031	0.078	0.072		
Lansdowne House	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.033	0.024		
Leamington	0.114	0.070	0.038	0.018	0.0044	0.0018	0.069	0.052		
Lindsay	0.126	0.087	0.052	0.027	0.0068	0.0030	0.076	0.068		
Lion's Head	0.080	0.062	0.040	0.021	0.0052	0.0022	0.045	0.050		
Listowel	0.093	0.066	0.041	0.021	0.0052	0.0022	0.054	0.052		
London	0.108	0.070	0.041	0.021	0.0052	0.0021	0.064	0.055		
Lucan	0.097	0.065	0.039	0.020	0.0050	0.0021	0.057	0.051		
Maitland	0.282	0.167	0.090	0.045	0.012	0.0046	0.179	0.140		
Markdale	0.089	0.066	0.042	0.022	0.0055	0.0022	0.052	0.052		
Markham	0.182	0.103	0.056	0.028	0.0068	0.0028	0.115	0.080		
Martin	0.072	0.039	0.019	0.0075	0.0015	0.0008	0.043	0.027		
Matheson	0.160	0.091	0.050	0.025	0.0062	0.0025	0.101	0.072		
Mattawa	0.446	0.237	0.114	0.052	0.013	0.0046	0.285	0.191		
Midland	0.101	0.075	0.046	0.024	0.0061	0.0025	0.058	0.059		
Milton	0.191	0.103	0.054	0.026	0.0064	0.0025	0.122	0.080		
Milverton	0.098	0.067	0.041	0.021	0.0053	0.0022	0.058	0.052		
Minden	0.124	0.089	0.054	0.028	0.0071	0.0031	0.073	0.071		
Mississauga	0.219	0.115	0.058	0.028	0.0068	0.0027	0.141	0.090		
Mississauga (Lester B. Pearson Int'l Airport)	0.193	0.105	0.056	0.027	0.0067	0.0027	0.123	0.082		
Mississauga (Port Credit)	0.247	0.125	0.062	0.029	0.0070	0.0027	0.159	0.098		
Mitchell	0.093	0.065	0.040	0.021	0.0052	0.0021	0.054	0.051		
Moosonee	0.081	0.051	0.029	0.014	0.0033	0.0015	0.049	0.038		
Morrisburg	0.558	0.287	0.135	0.062	0.016	0.0056	0.358	0.236		
Mount Forest	0.093	0.067	0.041	0.022	0.0053	0.0022	0.054	0.052		
Nakina	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024		
Nanticoke (Jarvis)	0.156	0.090	0.049	0.024	0.0059	0.0024	0.098	0.068		

Province and Location				Seismi	c Data			
	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Nanticoke (Port Dover)	0.144	0.085	0.047	0.023	0.0058	0.0024	0.089	0.066
Napanee	0.156	0.106	0.063	0.033	0.0084	0.0037	0.095	0.087
New Liskeard	0.209	0.122	0.065	0.032	0.0081	0.0032	0.132	0.097
Newcastle	0.186	0.107	0.058	0.029	0.0071	0.0030	0.118	0.086
Newcastle (Bowmanville)	0.188	0.107	0.058	0.029	0.0071	0.0030	0.119	0.086
Newmarket	0.132	0.085	0.050	0.026	0.0064	0.0027	0.081	0.067
Niagara Falls	0.321	0.157	0.072	0.032	0.0076	0.0030	0.207	0.121
North Bay	0.247	0.145	0.076	0.037	0.0095	0.0037	0.155	0.114
Norwood	0.136	0.094	0.057	0.029	0.0074	0.0031	0.082	0.075
Oakville	0.260	0.129	0.062	0.029	0.0070	0.0027	0.167	0.101
Orangeville	0.115	0.076	0.046	0.023	0.0058	0.0024	0.069	0.059
Orillia	0.109	0.079	0.049	0.026	0.0064	0.0027	0.064	0.063
Oshawa	0.192	0.108	0.058	0.029	0.0071	0.0030	0.122	0.086
Ottawa (Metropolitan)								
Ottawa (City Hall)	0.439	0.237	0.118	0.056	0.015	0.0055	0.281	0.196
Ottawa (Barrhaven)	0.427	0.230	0.115	0.055	0.015	0.0053	0.273	0.191
Ottawa (Kanata)	0.401	0.218	0.110	0.053	0.014	0.0052	0.257	0.181
Ottawa (M-C Int'l Airport)	0.446	0.240	0.119	0.056	0.015	0.0055	0.285	0.199
Ottawa (Orleans)	0.474	0.252	0.124	0.058	0.015	0.0056	0.304	0.208
Owen Sound	0.083	0.064	0.041	0.021	0.0053	0.0022	0.048	0.051
Pagwa River	0.060	0.040	0.023	0.011	0.0024	0.0013	0.035	0.028
Paris	0.141	0.084	0.047	0.023	0.0058	0.0024	0.088	0.066
Parkhill	0.092	0.063	0.038	0.020	0.0049	0.0020	0.054	0.050
Parry Sound	0.110	0.079	0.048	0.025	0.0064	0.0027	0.064	0.063
Pelham (Fonthill)	0.311	0.152	0.070	0.031	0.0074	0.0028	0.201	0.117
Pembroke	0.379	0.203	0.101	0.049	0.013	0.0048	0.243	0.168
Penetanguishene	0.101	0.074	0.046	0.024	0.0061	0.0025	0.058	0.059
Perth	0.225	0.142	0.080	0.041	0.011	0.0045	0.140	0.119
Petawawa	0.379	0.202	0.101	0.048	0.013	0.0048	0.243	0.166
Peterborough	0.135	0.092	0.055	0.028	0.0071	0.0031	0.082	0.072
Petrolia	0.092	0.062	0.037	0.019	0.0047	0.0020	0.054	0.048
Pickering (Dunbarton)	0.219	0.117	0.060	0.029	0.0071	0.0028	0.140	0.094
Picton	0.159	0.104	0.061	0.031	0.0078	0.0032	0.098	0.086
Plattsville	0.119	0.075	0.044	0.022	0.0055	0.0022	0.072	0.059
Point Alexander	0.391	0.209	0.104	0.049	0.013	0.0048	0.251	0.172
Port Burwell	0.132	0.079	0.044	0.022	0.0055	0.0022	0.081	0.062
Port Colborne	0.298	0.146	0.068	0.031	0.0073	0.0028	0.192	0.113
Port Elgin	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.048
Port Hope	0.181	0.106	0.059	0.029	0.0073	0.0030	0.114	0.086
Port Perry	0.144	0.091	0.053	0.027	0.0067	0.0028	0.089	0.071
Port Stanley	0.123	0.075	0.043	0.021	0.0052	0.0021	0.075	0.058
Prescott	0.350	0.195	0.101	0.049	0.013	0.0049	0.224	0.162

	Province and Location				Seismi	c Data			
	FIOVINCE AND LOCATION	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	Princeton	0.129	0.079	0.045	0.023	0.0056	0.0022	0.079	0.062
	Raith	0.067	0.038	0.019	0.0078	0.0016	0.0008	0.040	0.025
	Rayside-Balfour (Chelmsford)	0.104	0.072	0.044	0.023	0.0058	0.0024	0.061	0.056
	Red Lake	0.068	0.038	0.019	0.0076	0.0016	0.0008	0.041	0.025
	Renfrew	0.352	0.191	0.097	0.047	0.013	0.0048	0.226	0.160
	Richmond Hill	0.163	0.095	0.053	0.027	0.0065	0.0027	0.102	0.074
	Rockland	0.510	0.266	0.129	0.060	0.016	0.0056	0.328	0.221
	Sarnia	0.085	0.059	0.036	0.018	0.0046	0.0020	0.049	0.046
	Sault Ste. Marie	0.062	0.044	0.028	0.014	0.0033	0.0015	0.036	0.034
	Schreiber	0.057	0.035	0.019	0.0079	0.0018	0.0010	0.033	0.024
	Seaforth	0.087	0.062	0.039	0.020	0.0050	0.0021	0.050	0.048
	Shelburne	0.104	0.072	0.044	0.023	0.0058	0.0024	0.062	0.056
	Simcoe	0.141	0.084	0.047	0.023	0.0058	0.0024	0.087	0.064
	Sioux Lookout	0.073	0.040	0.020	0.0078	0.0016	0.0008	0.044	0.028
	Smiths Falls	0.256	0.156	0.086	0.044	0.012	0.0046	0.161	0.131
	Smithville	0.296	0.144	0.067	0.030	0.0071	0.0027	0.191	0.111
	Smooth Rock Falls	0.200	0.098	0.047	0.021	0.0050	0.0020	0.130	0.074
	South River	0.164	0.106	0.061	0.031	0.0080	0.0034	0.100	0.085
	Southampton	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.048
	St. Catharines	0.319	0.155	0.071	0.032	0.0076	0.0028	0.206	0.121
	St. Mary's	0.101	0.068	0.041	0.021	0.0052	0.0021	0.060	0.052
	St. Thomas	0.117	0.073	0.042	0.021	0.0052	0.0021	0.071	0.056
	Stirling	0.149	0.100	0.060	0.031	0.0078	0.0034	0.091	0.082
	Stratford	0.103	0.069	0.041	0.021	0.0053	0.0022	0.061	0.054
	Strathroy	0.100	0.066	0.039	0.020	0.0049	0.0021	0.059	0.051
	Sturgeon Falls	0.183	0.113	0.062	0.031	0.0080	0.0032	0.113	0.089
	Sudbury	0.110	0.076	0.046	0.024	0.0059	0.0025	0.065	0.059
	Sundridge	0.157	0.103	0.059	0.030	0.0078	0.0032	0.095	0.082
	Tavistock	0.108	0.071	0.042	0.022	0.0053	0.0022	0.065	0.055
	Temagami	0.239	0.138	0.072	0.035	0.0089	0.0035	0.151	0.109
	Thamesford	0.111	0.071	0.042	0.021	0.0053	0.0022	0.066	0.056
	Thedford	0.089	0.062	0.038	0.019	0.0047	0.0020	0.052	0.048
	Thunder Bay	0.061	0.035	0.018	0.0075	0.0016	0.0008	0.036	0.024
	Tillsonburg	0.126	0.077	0.044	0.022	0.0055	0.0022	0.076	0.060
	Timmins	0.125	0.075	0.043	0.021	0.0053	0.0022	0.078	0.058
	Timmins (Porcupine)	0.140	0.081	0.045	0.022	0.0055	0.0022	0.088	0.063
	Toronto Metropolitan Region								
	Etobicoke	0.193	0.106	0.056	0.027	0.0067	0.0027	0.124	0.082
	North York	0.195	0.107	0.056	0.028	0.0067	0.0027	0.125	0.083
	Scarborough	0.219	0.116	0.060	0.029	0.0070	0.0028	0.140	0.093
	Toronto (City Hall)	0.249	0.126	0.063	0.029	0.0071	0.0028	0.160	0.099
-	Trenton	0.167	0.105	0.060	0.030	0.0077	0.0032	0.104	0.086

	Dury in a surely starting				Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Trou	ut Creek	0.186	0.116	0.065	0.033	0.0084	0.0035	0.115	0.093
Uxb	pridge	0.139	0.089	0.052	0.027	0.0067	0.0028	0.086	0.070
Vau	ıghan (Woodbridge)	0.167	0.096	0.053	0.026	0.0065	0.0027	0.105	0.074
Vitte	oria	0.139	0.083	0.046	0.023	0.0056	0.0024	0.086	0.064
Wa	lkerton	0.083	0.062	0.039	0.021	0.0052	0.0021	0.048	0.050
Wa	laceburg	0.098	0.064	0.037	0.018	0.0044	0.0018	0.058	0.048
Wat	terloo	0.118	0.075	0.044	0.023	0.0056	0.0022	0.072	0.059
Wat	tford	0.095	0.064	0.038	0.019	0.0049	0.0020	0.056	0.050
Way	wa	0.062	0.043	0.026	0.013	0.0030	0.0014	0.036	0.031
We	lland	0.308	0.150	0.069	0.031	0.0074	0.0028	0.199	0.115
We	st Lorne	0.118	0.072	0.041	0.021	0.0050	0.0021	0.072	0.056
Whi	itby	0.203	0.112	0.059	0.029	0.0071	0.0028	0.130	0.089
Whi	itby (Brooklin)	0.176	0.102	0.056	0.028	0.0070	0.0028	0.111	0.080
	ite River	0.060	0.041	0.024	0.011	0.0025	0.0013	0.035	0.030
Wia	arton	0.080	0.062	0.040	0.021	0.0052	0.0022	0.046	0.050
	ndsor	0.096	0.063	0.035	0.017	0.0041	0.0017	0.057	0.048
	ngham	0.083	0.061	0.039	0.020	0.0050	0.0021	0.048	0.048
	odstock	0.118	0.075	0.043	0.022	0.0055	0.0022	0.071	0.058
	oming	0.090	0.061	0.037	0.019	0.0047	0.0020	0.053	0.048
Quebec	•								
	on-Vale	0.254	0.160	0.091	0.047	0.013	0.0051	0.159	0.138
Alm		0.785	0.416	0.196	0.089	0.022	0.0075	0.486	0.339
Am		0.109	0.078	0.049	0.026	0.0067	0.0028	0.064	0.063
	pestos	0.200	0.137	0.082	0.043	0.012	0.0049	0.123	0.118
Aylr		0.415	0.225	0.113	0.054	0.014	0.0053	0.265	0.186
,	e-Comeau	0.425	0.219	0.107	0.051	0.013	0.0051	0.275	0.182
	e-Saint-Paul	1.62	0.872	0.406	0.179	0.043	0.012	0.986	0.735
	auport	0.509	0.275	0.138	0.067	0.018	0.0065	0.327	0.233
	lford	0.358	0.204	0.107	0.053	0.014	0.0053	0.228	0.170
Bel		0.522	0.272	0.131	0.062	0.016	0.0059	0.333	0.225
Bro		0.236	0.152	0.087	0.045	0.012	0.0049	0.147	0.130
	ssard	0.587	0.306	0.145	0.067	0.012	0.0062	0.374	0.251
	kingham	0.491	0.257	0.125	0.058	0.015	0.0056	0.316	0.213
	npbell's Bay	0.387	0.208	0.105	0.050	0.013	0.0051	0.248	0.173
	ambly	0.550	0.286	0.137	0.064	0.017	0.0059	0.352	0.236
	aticook	0.193	0.129	0.077	0.040	0.017	0.0045	0.119	0.110
	ntrecoeur	0.473	0.125	0.124	0.040	0.011	0.0043	0.303	0.207
	vansville	0.473	0.251	0.124	0.039	0.018	0.0058	0.303	0.207
		0.273			0.048	0.013	0.0051	0.172	
	ux-Montagnes		0.313	0.149					0.258
	beau	0.484	0.255	0.125	0.058	0.015	0.0055	0.308	0.211
	Immondville	0.273	0.167	0.094	0.048	0.013	0.0052	0.172	0.144
⊢ari	nham	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174

	Province and Location	ļ	1	r	Seismi	c Data	1	r	r
	Frovince and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	Fort-Coulonge	0.391	0.210	0.105	0.050	0.013	0.0051	0.251	0.174
	Gagnon	0.078	0.060	0.040	0.021	0.0055	0.0022	0.045	0.048
	Gaspé	0.128	0.090	0.056	0.029	0.0077	0.0032	0.076	0.074
	Gatineau	0.442	0.238	0.119	0.056	0.015	0.0055	0.283	0.197
	Gracefield	0.426	0.222	0.109	0.051	0.013	0.0051	0.278	0.185
	Granby	0.275	0.169	0.094	0.048	0.013	0.0052	0.173	0.144
	Harrington-Harbour	0.072	0.056	0.037	0.020	0.0052	0.0022	0.041	0.046
	Havre-St-Pierre	0.231	0.122	0.062	0.030	0.0077	0.0031	0.148	0.097
	Hemmingford	0.546	0.290	0.141	0.066	0.017	0.0060	0.347	0.239
	Hull	0.432	0.234	0.117	0.056	0.015	0.0055	0.276	0.195
	Iberville	0.520	0.273	0.132	0.062	0.016	0.0059	0.332	0.225
	Inukjuak	0.065	0.040	0.022	0.0094	0.0021	0.0010	0.038	0.028
_	Joliette	0.457	0.241	0.119	0.057	0.015	0.0056	0.293	0.201
	Kuujjuaq	0.074	0.054	0.036	0.019	0.0049	0.0021	0.043	0.043
	Kuujjuarapik	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.032	0.024
	La Pocatière	1.51	0.817	0.384	0.170	0.041	0.012	0.927	0.690
	La-Malbaie	1.73	0.954	0.454	0.203	0.049	0.014	1.04	0.809
	La-Tuque	0.196	0.137	0.082	0.043	0.012	0.0049	0.120	0.119
	Lac-Mégantic	0.193	0.130	0.077	0.040	0.011	0.0045	0.119	0.111
	Lachute	0.518	0.274	0.133	0.063	0.016	0.0059	0.333	0.228
	Lennoxville	0.187	0.129	0.077	0.041	0.011	0.0046	0.114	0.110
	Léry	0.603	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
	Loretteville	0.502	0.268	0.134	0.065	0.017	0.0063	0.323	0.227
	Louiseville	0.366	0.201	0.105	0.052	0.014	0.0055	0.234	0.170
	Magog	0.196	0.133	0.079	0.042	0.011	0.0046	0.120	0.114
	Malartic	0.135	0.092	0.055	0.029	0.0074	0.0031	0.081	0.074
	Maniwaki	0.430	0.220	0.107	0.050	0.013	0.0049	0.282	0.184
	Masson	0.498	0.261	0.127	0.059	0.016	0.0056	0.320	0.216
	Matane	0.455	0.230	0.110	0.052	0.013	0.0051	0.295	0.191
	Mont-Joli	0.427	0.226	0.113	0.055	0.015	0.0055	0.275	0.191
	Mont-Laurier	0.419	0.212	0.103	0.049	0.013	0.0048	0.276	0.177
	Montmagny	0.601	0.341	0.172	0.082	0.022	0.0075	0.382	0.286
	Montréal Region								
	Beaconsfield	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.260
	Dorval	0.600	0.316	0.151	0.069	0.018	0.0062	0.382	0.259
	Laval	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.256
	Montréal (City Hall)	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.255
	Montréal-Est	0.586	0.305	0.145	0.067	0.017	0.0062	0.374	0.250
	Montréal-Nord	0.593	0.309	0.147	0.068	0.017	0.0062	0.378	0.254
	Outremont	0.597	0.313	0.149	0.068	0.018	0.0062	0.380	0.256
	Pierrefonds	0.599	0.315	0.151	0.069	0.018	0.0062	0.382	0.259
	St-Lambert	0.590	0.307	0.146	0.067	0.017	0.0062	0.376	0.252

Province and I					Seismi	c Data			
Province and I		S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
St-Laurent		0.598	0.314	0.149	0.069	0.018	0.0062	0.381	0.258
Ste-Anne-de-Bellevue	I Contraction of the second	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.262
Verdun		0.596	0.312	0.149	0.068	0.018	0.0062	0.380	0.256
Nicolet (Gentilly)		0.364	0.201	0.106	0.052	0.015	0.0055	0.233	0.170
Nitchequon		0.062	0.047	0.031	0.017	0.0041	0.0018	0.035	0.038
Noranda		0.132	0.088	0.052	0.027	0.0068	0.0028	0.080	0.070
Percé		0.114	0.084	0.053	0.029	0.0074	0.0032	0.067	0.068
Pincourt		0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Plessisville		0.250	0.160	0.092	0.048	0.013	0.0052	0.157	0.140
Port-Cartier		0.323	0.169	0.084	0.040	0.010	0.0039	0.210	0.137
Puvirnituq		0.108	0.058	0.029	0.012	0.0025	0.0011	0.068	0.043
Québec City Region									
Ancienne-Lorette		0.487	0.258	0.130	0.062	0.017	0.0062	0.314	0.220
Lévis		0.493	0.265	0.134	0.065	0.017	0.0063	0.317	0.225
Québec		0.493	0.265	0.133	0.064	0.017	0.0063	0.318	0.225
Sillery		0.486	0.260	0.131	0.063	0.017	0.0062	0.313	0.221
Ste-Foy		0.488	0.261	0.131	0.063	0.017	0.0062	0.315	0.221
Richmond		0.208	0.140	0.083	0.044	0.012	0.0049	0.128	0.121
Rimouski		0.408	0.224	0.116	0.056	0.015	0.0056	0.262	0.192
Rivière-du-Loup		1.16	0.616	0.288	0.129	0.032	0.0097	0.724	0.517
Roberval		0.688	0.353	0.164	0.074	0.019	0.0065	0.430	0.287
Rock-Island		0.199	0.133	0.078	0.041	0.011	0.0046	0.123	0.113
Rosemère		0.591	0.309	0.147	0.068	0.017	0.0062	0.377	0.255
Rouyn		0.134	0.089	0.052	0.027	0.0068	0.0028	0.081	0.070
Saguenay		0.791	0.425	0.204	0.095	0.024	0.0080	0.491	0.353
Saguenay (Bagotville)		0.801	0.434	0.210	0.098	0.025	0.0083	0.498	0.362
Saguenay (Jonquière)		0.798	0.428	0.206	0.095	0.024	0.0080	0.495	0.354
Saguenay (Kenogami)		0.799	0.428	0.206	0.095	0.024	0.0080	0.496	0.354
Saint-Eustache		0.593	0.311	0.149	0.068	0.018	0.0062	0.378	0.256
Saint-Jean-sur-Richelieu		0.522	0.274	0.133	0.062	0.016	0.0059	0.333	0.227
Salaberry-de-Valleyfield		0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Schefferville		0.059	0.042	0.027	0.014	0.0033	0.0015	0.034	0.031
Senneterre		0.114	0.083	0.052	0.028	0.0071	0.0031	0.067	0.067
Sept-Îles		0.295	0.156	0.078	0.037	0.0095	0.0038	0.191	0.126
Shawinigan		0.306	0.179	0.098	0.049	0.014	0.0053	0.195	0.154
Shawville		0.386	0.208	0.105	0.050	0.013	0.0051	0.248	0.173
Sherbrooke		0.187	0.129	0.078	0.041	0.011	0.0046	0.115	0.111
Sorel		0.406	0.220	0.113	0.055	0.015	0.0056	0.259	0.184
St-Félicien		0.488	0.259	0.127	0.059	0.016	0.0056	0.309	0.212
St-Georges-de-Cacouna		0.857	0.478	0.234	0.109	0.028	0.0090	0.533	0.396
St-Hubert		0.581	0.302	0.144	0.066	0.017	0.0060	0.371	0.248
Saint-Hubert-de-Rivière-	du-l oup	0.468	0.279	0.147	0.073	0.020	0.0069	0.298	0.237

N

Γ			Seismic Data $S_a(0.2)$ $S_a(0.5)$ $S_a(1.0)$ $S_a(2.0)$ $S_a(5.0)$ $S_a(10.0)$ PGA PGV 0.369 0.208 0.109 0.054 0.015 0.0055 0.235 0.174 0.539 0.282 0.135 0.063 0.017 0.0059 0.346 0.233 0.428 0.222 0.110 0.052 0.014 0.0052 0.281 0.186 0.597 0.315 0.151 0.070 0.018 0.0062 0.380 0.259 0.466 0.248 0.125 0.060 0.016 0.0060 0.301 0.211 0.431 0.226 0.112 0.054 0.014 0.0053 0.282 0.191 0.431 0.226 0.112 0.054 0.014 0.0053 0.282 0.191 0.434 0.399 0.202 0.097 0.026 0.0049 0.152 0.131 0.694 0.399 0.202 0.097 0.026 </th							
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV	
	St-Hyacinthe	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174	
	St-Jérôme	0.539	0.282	0.135	0.063	0.017	0.0059	0.346	0.233	
	St-Jovite	0.428	0.222	0.110	0.052	0.014	0.0052	0.281	0.186	
	St-Lazare-Hudson	0.597	0.315	0.151	0.070	0.018	0.0062	0.380	0.259	
	St-Nicolas	0.466	0.248	0.125	0.060	0.016	0.0060	0.301	0.211	
	Ste-Agathe-des-Monts	0.431	0.226	0.112	0.054	0.014	0.0053	0.282	0.191	
ſ	Sutton	0.243	0.154	0.088	0.045	0.012	0.0049	0.152	0.131	
	Tadoussac	0.694	0.399	0.202	0.097	0.026	0.0084	0.434	0.335	
	Témiscaming	0.820	0.411	0.181	0.075	0.017	0.0053	0.516	0.329	
	Terrebonne	0.584	0.304	0.144	0.067	0.017	0.0060	0.373	0.250	
	Thetford Mines	0.207	0.142	0.084	0.044	0.012	0.0049	0.127	0.123	
ſ	Thurso	0.492	0.258	0.126	0.059	0.016	0.0056	0.318	0.215	
	Trois-Rivières	0.366	0.200	0.105	0.052	0.014	0.0055	0.234	0.170	
	Val-d'Or	0.135	0.093	0.056	0.029	0.0076	0.0032	0.081	0.074	
	Varennes	0.571	0.296	0.141	0.065	0.017	0.0060	0.365	0.243	
	Verchères	0.537	0.278	0.134	0.062	0.016	0.0059	0.343	0.229	
Γ	Victoriaville	0.233	0.152	0.089	0.046	0.013	0.0051	0.145	0.133	
	Ville-Marie	0.262	0.148	0.076	0.037	0.0093	0.0037	0.166	0.117	
	Wakefield	0.409	0.222	0.111	0.054	0.014	0.0053	0.262	0.185	
	Waterloo	0.232	0.150	0.087	0.045	0.012	0.0049	0.144	0.129	
	Windsor	0.194	0.134	0.080	0.042	0.012	0.0048	0.119	0.115	
- 1	New Brunswick									
	Alma	0.144	0.096	0.058	0.030	0.0078	0.0034	0.088	0.079	
	Bathurst	0.217	0.127	0.071	0.036	0.0090	0.0038	0.138	0.105	
	Campbellton	0.210	0.133	0.076	0.039	0.010	0.0042	0.132	0.113	
	Edmundston	0.231	0.153	0.089	0.046	0.012	0.0049	0.145	0.134	
	Fredericton	0.210	0.127	0.071	0.037	0.0093	0.0039	0.133	0.105	
	Gagetown	0.195	0.119	0.068	0.035	0.0089	0.0038	0.122	0.098	
	Grand Falls	0.254	0.153	0.085	0.043	0.011	0.0046	0.162	0.131	
	Miramichi	0.214	0.125	0.069	0.035	0.0087	0.0037	0.136	0.102	
	Moncton	0.158	0.100	0.059	0.031	0.0078	0.0034	0.098	0.083	
	Oromocto	0.209	0.126	0.071	0.036	0.0092	0.0039	0.132	0.103	
	Sackville	0.140	0.093	0.057	0.030	0.0078	0.0034	0.085	0.079	
	Saint Andrews	0.874	0.436	0.189	0.077	0.017	0.0053	0.544	0.345	
	Saint George	0.578	0.298	0.135	0.058	0.014	0.0048	0.367	0.232	
	Saint John	0.199	0.121	0.068	0.035	0.0089	0.0037	0.125	0.097	
	Shippagan	0.143	0.096	0.058	0.030	0.0078	0.0034	0.087	0.079	
	St. Stephen	0.781	0.380	0.163	0.067	0.015	0.0051	0.491	0.302	
	Woodstock	0.206	0.129	0.074	0.038	0.0099	0.0042	0.130	0.109	
I	Nova Scotia									
	Amherst	0.130	0.089	0.055	0.030	0.0078	0.0034	0.078	0.074	
	Antigonish	0.098	0.076	0.050	0.028	0.0073	0.0031	0.057	0.064	

				Seismi	c Data			
Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Bridgewater	0.117	0.086	0.054	0.029	0.0078	0.0034	0.068	0.071
Canso	0.114	0.085	0.054	0.029	0.0078	0.0034	0.066	0.071
Debert	0.107	0.080	0.052	0.029	0.0076	0.0032	0.062	0.068
Digby	0.164	0.105	0.061	0.032	0.0083	0.0035	0.101	0.085
Greenwood (CFB)	0.128	0.090	0.055	0.029	0.0077	0.0032	0.076	0.074
Halifax Region								
Dartmouth	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Halifax	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Kentville	0.120	0.087	0.055	0.030	0.0078	0.0034	0.071	0.072
Liverpool	0.120	0.086	0.054	0.029	0.0076	0.0032	0.070	0.070
Lockeport	0.123	0.087	0.054	0.028	0.0074	0.0031	0.073	0.071
Louisburg	0.119	0.089	0.056	0.030	0.0080	0.0035	0.069	0.074
Lunenburg	0.115	0.085	0.054	0.029	0.0078	0.0034	0.067	0.070
New Glasgow	0.099	0.077	0.051	0.028	0.0074	0.0032	0.057	0.064
North Sydney	0.105	0.081	0.053	0.029	0.0076	0.0032	0.061	0.068
Pictou	0.098	0.076	0.050	0.028	0.0074	0.0031	0.057	0.064
Port Hawkesbury	0.102	0.079	0.052	0.028	0.0076	0.0032	0.059	0.066
Springhill	0.118	0.085	0.054	0.029	0.0077	0.0034	0.070	0.071
Stewiacke	0.107	0.081	0.053	0.029	0.0077	0.0032	0.062	0.068
Sydney	0.108	0.083	0.054	0.029	0.0077	0.0034	0.063	0.070
Tatamagouche	0.103	0.079	0.052	0.028	0.0076	0.0032	0.061	0.066
Truro	0.105	0.080	0.052	0.029	0.0076	0.0032	0.061	0.067
Wolfville	0.118	0.086	0.055	0.030	0.0078	0.0034	0.069	0.071
Yarmouth	0.137	0.094	0.057	0.030	0.0078	0.0034	0.082	0.075
Prince Edward Island								
Charlottetown	0.103	0.077	0.051	0.028	0.0074	0.0032	0.060	0.066
Souris	0.091	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
Summerside	0.133	0.089	0.055	0.029	0.0076	0.0032	0.082	0.075
Tignish	0.135	0.090	0.056	0.030	0.0076	0.0032	0.083	0.076
Newfoundland								
Argentia	0.098	0.079	0.052	0.029	0.0076	0.0032	0.056	0.066
Bonavista	0.083	0.067	0.045	0.025	0.0065	0.0028	0.047	0.056
Buchans	0.077	0.064	0.044	0.024	0.0064	0.0028	0.043	0.054
Cape Harrison	0.125	0.087	0.052	0.028	0.0071	0.0031	0.074	0.068
Cape Race	0.108	0.085	0.055	0.030	0.0080	0.0034	0.062	0.071
Channel-Port aux Basques	0.088	0.071	0.048	0.026	0.0068	0.0030	0.050	0.059
Corner Brook	0.074	0.062	0.043	0.024	0.0062	0.0027	0.042	0.052
Gander	0.077	0.064	0.044	0.024	0.0064	0.0027	0.044	0.054
Grand Bank	0.115	0.090	0.057	0.031	0.0081	0.0035	0.067	0.074
Grand Falls	0.076	0.064	0.044	0.024	0.0064	0.0027	0.043	0.054
Happy Valley-Goose Bay	0.067	0.050	0.032	0.017	0.0044	0.0018	0.039	0.040
Labrador City	0.067	0.052	0.035	0.019	0.0047	0.0020	0.038	0.042

					Seismi	c Data			
	Province and Location	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
	St. Anthony	0.073	0.057	0.038	0.021	0.0053	0.0022	0.041	0.047
	St. John's	0.090	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
	Stephenville	0.077	0.064	0.044	0.025	0.0064	0.0028	0.044	0.054
	Twin Falls	0.064	0.047	0.030	0.016	0.0040	0.0017	0.037	0.036
	Wabana	0.089	0.072	0.048	0.027	0.0071	0.0031	0.051	0.060
	Wabush	0.067	0.052	0.035	0.019	0.0047	0.0020	0.039	0.042
Yul	kon								
	Aishihik	0.446	0.364	0.233	0.122	0.043	0.016	0.218	0.255
	Dawson	0.396	0.277	0.168	0.087	0.030	0.012	0.185	0.174
	Destruction Bay ⁽¹⁾	1.54	1.15	0.666	0.330	0.119	0.038	0.693	0.816
	Faro	0.271	0.189	0.122	0.067	0.023	0.0091	0.126	0.125
	Haines Junction	0.973	0.691	0.398	0.193	0.066	0.022	0.467	0.452
	Snag	0.502	0.394	0.254	0.138	0.052	0.019	0.242	0.294
	Teslin	0.284	0.202	0.129	0.073	0.025	0.0096	0.133	0.138
	Watson Lake	0.304	0.214	0.125	0.061	0.020	0.0077	0.142	0.123
	Whitehorse	0.334	0.258	0.170	0.094	0.033	0.012	0.154	0.184
No	rthwest Territories								
	Aklavik	0.475	0.321	0.183	0.089	0.029	0.011	0.225	0.199
	Echo Bay / Port Radium	0.052	0.038	0.031	0.020	0.0068	0.0031	0.030	0.032
	Fort Good Hope	0.257	0.197	0.128	0.068	0.024	0.0091	0.119	0.127
	Fort McPherson	0.476	0.354	0.211	0.103	0.035	0.013	0.225	0.223
	Fort Providence	0.055	0.044	0.037	0.023	0.0077	0.0035	0.031	0.038
	Fort Resolution	0.052	0.032	0.017	0.0072	0.0015	0.0008	0.030	0.021
	Fort Simpson	0.154	0.134	0.090	0.047	0.016	0.0062	0.072	0.083
	Fort Smith	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.021
	Hay River	0.053	0.034	0.025	0.016	0.0056	0.0025	0.031	0.028
	Holman/Ulukhaqtuuq	0.057	0.040	0.025	0.012	0.0031	0.0014	0.033	0.030
	Inuvik	0.308	0.223	0.139	0.072	0.025	0.0094	0.145	0.149
	Mould Bay	0.21	0.120	0.070	0.037	0.010	0.0041	0.136	0.104
	Norman Wells	0.688	0.445	0.238	0.105	0.031	0.011	0.340	0.256
	Rae-Edzo	0.052	0.036	0.029	0.019	0.0065	0.0030	0.030	0.031
	Tungsten	0.325	0.238	0.143	0.070	0.023	0.0089	0.153	0.145
	Wrigley	0.653	0.421	0.224	0.099	0.029	0.010	0.319	0.241
	Yellowknife	0.052	0.032	0.017	0.0070	0.0015	0.0008	0.030	0.021
Nu	navut								
	Alert	0.145	0.083	0.044	0.021	0.0049	0.0020	0.091	0.062
	Arctic Bay	0.111	0.080	0.052	0.028	0.0071	0.0031	0.066	0.066
	Arviat / Eskimo Point	0.054	0.037	0.022	0.0097	0.0021	0.0011	0.031	0.025
	Baker Lake	0.068	0.048	0.029	0.014	0.0031	0.0014	0.039	0.035
	Cambridge Bay/Iqaluktuuttiaq	0.059	0.041	0.025	0.012	0.0025	0.0013	0.034	0.030
	Chesterfield Inlet/Igluligaarjuk	0.081	0.054	0.031	0.015	0.0034	0.0015	0.047	0.042
	Clyde River /Kanngiqtugaapik	0.306	0.186	0.104	0.053	0.015	0.0056	0.195	0.162

Province and Location	Seismic Data							
	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA	PGV
Coppermine (Kugluktuk)	0.053	0.031	0.016	0.0066	0.0013	0.0007	0.031	0.021
Coral Harbour /Salliq	0.103	0.064	0.035	0.016	0.0037	0.0015	0.062	0.048
Eureka	0.173	0.106	0.065	0.035	0.010	0.0040	0.110	0.093
Iqaluit	0.087	0.065	0.043	0.023	0.0058	0.0025	0.051	0.052
Isachsen	0.256	0.171	0.102	0.055	0.016	0.0061	0.162	0.158
Nottingham Island	0.109	0.060	0.031	0.014	0.0030	0.0014	0.068	0.044
Rankin Inlet (Kangiqiniq)	0.064	0.045	0.027	0.013	0.0028	0.0014	0.036	0.034
Resolute	0.194	0.105	0.057	0.028	0.0069	0.0030	0.124	0.084
Resolution Island	0.203	0.123	0.069	0.035	0.0092	0.0038	0.128	0.102

National Building Code of Canata 2015 Volume 1, Division B

INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION ICF-MA.ORG

This page left intentionally blank.

The Insulating Concrete Forms Manufacturers Association **Prescriptive ICF Design for Part 9 Structures in Canada**

THE INSULATING CONCRETE FORMS **MANUFACTURERS ASSOCIATION**

The Insulating Concrete Forms Manufacturers Association (ICFMA) is the North American non-profit trade association for the Insulated Concrete Form industry and was founded in 2014 by a dedicated group of manufacturers with the interest of improving the quality and acceptance of Insulated Concrete Form construction.

MISSION

The mission of the ICFMA is to promote and enhance the social, environmental and economic value of insulating concrete forms in the North American marketplace.

LEARN MORE ABOUT ICFS AT ICF-MA.ORG

FOXBLOCKS.COM

This engineering is only authorized for use by ICFMA Members. ©2021 All Rights Reserved.